The National Strategies

Learning targets in science

Learning targets in science

First published in 2010 Ref: 00061-2010BKT-EN

Disclaimer

The Department for Children, Schools and Families wishes to make it clear that the Department and its agents accept no responsibility for the actual content of any materials suggested as information sources in this publication, whether these are in the form of printed publications or on a website.

In these materials, icons, logos, software products and websites are used for contextual and practical reasons. Their use should not be interpreted as an endorsement of particular companies or their products.

The websites referred to in these materials existed at the time of going to print.

Please check all website references carefully to see if they have changed and substitute other references where appropriate.

Contents

1.	Introduction			
	1.1	Purpose of these materials	7	
	1.2	Key messages	7	
	1.3	What's in it for the teacher?	7	
	1.4	What's in it for the pupils?	7	
	1.5	AfL quality standards	8	
2.	Lear	ning targets	8	
	2.1	What is a Learning target?	8	
	2.2	Using Learning targets	9	
	2.3	Involving pupils	10	
3.	Succ	ess criteria	10	
	3.1	What are success criteria?	10	
	3.2	Why use success criteria?	11	
	3.3	How to set success criteria	11	
4.	Usin	g the resources	12	
	4.1	Models of learning	12	
	4.2	How to use the supporting resources	13	
	4.3	Using Learning target Level Ladders	13	
	4.4	Learning mats	16	
	4.5	Top tips	16	
5.	Lear	ning targets linked to APP criteria	16	
	5.1	Assessment Focus 1: Thinking scientifically	17	
	5.2	Assessment Focus 2: Understanding the applications and implications of science	25	
	5.3	Assessment Focus 3: Communicating and collaborating in science	35	
	5.4	Assessment Focus 4: Using investigative approaches	44	
	5.5	Assessment Focus 5: Working critically with evidence	51	

© Crown copyright 2010 00061-2010BKT-EN

The National Strategies Learning targets in science

6.	Lear	Learning targets linked to levels 6		
	6.1	Learning targets linked to level 2	62	
	6.2	Learning targets linked to level 3	65	
	6.3	Learning targets linked to level 4	69	
	6.4	Learning targets linked to level 5	72	
	6.5	Learning targets linked to level 6	75	
	6.6	Learning targets linked to level 7	79	
	6.7	Learning targets linked to level 8	83	
Appendices		ices	87	
	Appendix 1: Glossary of terms		87	
	Appendix 2: Examples of Learning mats			
Ref	eferences and further reading			

00061-2010BKT-EN © Crown copyright 2010

1. Introduction

Do your pupils...

- make progress, in relation to learning objectives, with some independence?
- sometimes use their own success criteria to improve?

As a teacher, do you...

- review progress regularly with pupils?
- use skilful questioning, appropriate resources and engaging activities to focus and sustain wholeclass and group dialogue?
- have an understanding of standards and progression across the key concepts and skills that informs your planning?

If so, you are ready to take the next step in developing your expertise by developing Learning targets with pupils. Using Learning targets will result in pupils acquiring an appetite for learning; they will be able independently to identify and take their next steps to help them make good progress.

A further consideration is the guidance and grade descriptors for inspecting schools in England under section 5 of the Education Act 2005. From September 2009 this includes evaluation of the use of assessment to support learning, through which inspectors should evaluate:

- how well teaching promotes learning, progress and enjoyment for all pupils
- how well assessment is used to meet the needs of all pupils.

The Ofsted evaluation criteria (2009) for a 'good lesson' are shown in the box below, with the ideas promoted in this unit highlighted.

The teaching is consistently effective in ensuring that pupils are motivated and engaged. The great majority of teaching is securing good progress and learning. Teachers generally have strong subject knowledge which enthuses and challenges most pupils and contributes to their good progress. Good and imaginative use is made of resources, including new technology to enhance learning. Other adults' support is well focused and makes a significant contribution to the quality of learning. As a result of good assessment procedures, teachers and other adults plan well to meet the needs of all pupils. Pupils are provided with detailed feedback, both orally and through marking. They know how well they have done and can discuss what they need to do to sustain good progress. Teachers listen to, observe and question groups of pupils during lessons in order to reshape tasks and explanations to improve learning.

From: Ofsted's evaluation schedule of judgements for schools inspected under section 5 of the Education Act 2005, updated September 2009.

Previous Assessment for Learning (AfL) documentation in science has focused on the setting of curricular targets for pupils, and had strong links to numerical targets. Pupil Learning targets constitute a slightly different approach, and can be used by teachers as part of an improvement cycle which places learning and the learner at the heart of assessment, and where assessment is integral to learning and teaching.

© Crown copyright 2010 00061-2010BKT-EN

Improvement cycle

Learning targets

Review and revise Learning targets

Evidence of learning

- Periodic judgements
- Day-to-day assessment

Structuring learning

Through:

- effective planning for learning
- use of the Science Framework
- AfL in science units 1–3

Pupil learning

This resource provides support for teachers who are beginning to plan for the next steps in learning for pupils as a result of periodic judgements or day-to-day assessments in science. It provides clear Learning targets which show how to progress to the next level. These are supported by examples of science-specific contexts that link closely to the Assessing Pupils' Progress (APP) assessment criteria.

An example of the format of the Learning target tables is shown below. This example shows the Learning targets and contextual examples associated with *Assessment Focus 1: Thinking Scientifically, Thread 1: Using models for and in explanations*. It covers the Learning targets which will support pupils moving towards levels 6 and 7 in this area of science. Learning target tables for all Assessment Focuses can be found on pages 17–61.

Level 7 APP assessment criteria	Make explicit connections between abstract ideas and/or models in explaining processes or phenomena
Examples of some contexts to support lesson planning	 When explaining rock formation, link the ideas of particles, energy and forces When explaining the effect of bleaching of corals, link the ideas of photosynthesis, symbiosis and interdependence
Level 7 Learning targets While learning aboutpupils can:	 develop original models to explain ideas and events justify the selection of a model to explain an idea explain events explicitly linking different ideas or models

00061-2010BKT-EN © Crown copyright 2010

Level 6 APP assessment criteria	 Use abstract ideas or models or multiple factors when explaining processes or phenomena Identify the strengths and weaknesses of particular models
Examples of some contexts to support lesson planning	 When explaining optical anomalies that depend on refraction of light, use an accepted analogy correctly, for example tank tracks or oars working at different speeds leading to change of direction, and provide reasons why this is a good model When explaining the manufacture of soft centres in chocolates, use poppet beads to represent molecules being broken down into soluble molecules by enzymes When explaining unfamiliar observations that show conduction and/or convection, use (for example) the energy transfer model For any model used, pupils should be able to give strengths and weaknesses
Level 6 Learning targets While learning aboutpupils can:	 explain logically ideas or events using abstract models in new situations say what is good or bad about a model select the most appropriate model to explain an idea
Level 5 APP assessment criteria	 Use abstract ideas or models or more than one step when describing processes or phenomena Explain processes or phenomena, suggest solutions to problems or answer questions by drawing on abstract ideas or models

This unit is part of a series of support materials to strengthen AfL in science. It is a stand-alone unit. However, to secure effective AfL practice, a school or department may also need to consider the core unit Lesson scaffolding, and those on Oral feedback, Written feedback and Peer and self-assessment.

© Crown copyright 2010 00061-2010BKT-EN

The diagram below shows how the units fit together, and they can be found on the National Strategies web area. Go to www.standards.dcsf.gov.uk/nationalstrategies and search using DCSF ref: 00932-2009.

How the science Assessment for Learning units fit together

Structuring learning to develop **Quality First teaching**

,

Unit 1 Lesson scaffolding

Supporting structured learning through:

- learning objectives
- learning outcomes
- success criteria

NEXT STEPS

Unit 2a Oral feedback

Recognising learning
Celebrating learning
Highlighting next steps

Developing independent learners

in learning

Unit 2b Written feedback

Recognising learning

Celebrating learning

Highlighting next steps in learning

Developing independent learners

Unit 3 Peer and selfassessment

Recognising learning

Celebrating learning

Highlighting next steps in learning

Developing independent learners

Learning targets in science

Recognising learning Identifying next steps Celebrating learning

Developing independent learners

00061-2010BKT-EN © Crown copyright 2010

1.1 Purpose of these materials

- To define what is meant by Learning targets.
- To explain the principles of setting Learning targets.
- To outline the process of setting Learning targets and how this can be linked explicitly to opportunities for periodic assessment through Assessing Pupils' Progress (APP).
- To identify strategies which enable pupils to take responsibility for their own progress and become more independent learners.

1.2 Key messages

- For Learning targets to support pupils' next steps in learning, AfL practice needs to be successfully established in the classroom.
- Learning targets are written in accessible language so that they can be easily shared and understood by pupils, parents and carers and other adults involved in the pupils' learning journey.
- When Learning targets are negotiated, teachers need to review and change their approaches so that the targets can be achieved.
- Pupils' Learning targets need to be reflected in teachers' planning: in learning objectives, learning outcomes and success criteria.

1.3 What's in it for the teacher?

Learning targets are tools that can help teachers to:

- support pupils in finding out what they need to do to make their next steps in learning so that they
 can make good progress in science
- fill the specific gaps and weaknesses in pupils' learning and understanding of science
- have personalised discussions with pupils and parents about achievements and next steps for learning
- be aware of the need for wave 2 or 3 intervention when quality first teaching has left some pupils behind
- help develop and refine teachers' understanding of progression in How Science Works (HSW)
- support the science department in meeting the numerical targets that have been set internally for the end of Key Stage 3.

Once gaps in pupils' learning have been identified, the National Strategies Framework can be used to support planning and also next teaching steps and learning opportunities.

1.4 What's in it for the pupils?

Learning targets help pupils to be in control of their own learning by being clear about what they can do in science, what their next steps are and how to achieve them. Learning targets can help develop their skills, knowledge and understanding of science and support good progress. The target focuses discussions with pupils and parents about achievements and allows teachers to be precise about the next steps in learning. As a result, pupils are more likely to experience personalised high quality first teaching, including guided learning and other intervention, to meet their needs.

The main principle underpinning the use of AfL is the development of the independent learner who is better prepared to take the next steps in learning with the appropriate support from their teacher and peers.

© Crown copyright 2010 00061-2010BKT-EN

The independent learner

'Independent learners...are able to engage in self-reflection and to identify the next steps in their learning. Teachers should equip learners with the desire and the capacity to take charge of their learning through developing the skills of self-assessment.'

Assessment for Learning: 10 principles, Assessment Reform Group, 2002

1.5 AfL quality standards

These materials link closely with specific quality standards developed for AfL.

Day-to-day assessment

- 2.1 All teachers have a secure and shared understanding of AfL and how it impacts on learning and standards.
- 2.2 All teachers have a good understanding of progression in the key concepts and skills in their subject.
- 2.3 All teachers give pupils clear feedback that identifies next steps, and provide opportunities in lessons for pupils to discuss and act upon the feedback.
- All pupils have the confidence, disposition and skills to evaluate the quality of their work and level of understanding, and to work with their teachers and peers to take the next steps in their learning.

Periodic assessment

- 3.3 APP is integral to tracking and target setting that ensures that all underachieving groups and individuals are receiving appropriate additional support.
- 3.4 APP criteria are shared and discussed regularly with every pupil to agree targets and review progress towards them.
- 3.5 Teachers use APP assessment information to inform whole-class learning and teaching, group intervention and one-to-one support and tuition.
- **3.6** Information from APP assessments is used to support transition and transfer.
- 3.7 Individual pupils' progress and curricular (Learning) targets (related to National Curriculum (NC) levels and informed by APP criteria) are regularly shared and discussed with parents and carers.

A self-evaluation tool used to develop the AfL quality standards and their link to APP can be found on the National Strategies web area. Go to www.standards.dcsf.gov.uk/nationalstrategies and search using DCSF ref: 00734-2009PDF-EN-03.

2. Learning targets

2.1 What is a Learning target?

A Learning target summarises the next step in expected pupil learning that has been identified through any assessment or review process. These should be used to inform teachers' on-going planning.

Learning targets are related and aligned to pupils' particular needs and written in language that is understood by, shared with and owned by the pupil. Learning targets could be agreed for long-term (e.g. a term, after a periodic judgement or year), medium-term (e.g. few weeks), or short-term (e.g. few lessons) periods of time.

They are:

- monitored as part of an overall profile of the pupil across all subjects
- shared with other staff to inform their plans
- explicit in short-term planning
- SMART (Specific Measurable Achievable Relevant Time-related).

2.2 Using Learning targets

As a result of regular dialogue with their teacher, pupils will know their Learning targets. They can also be communicated to parents through planners, virtual learning environments (VLEs), parents' meetings and other methods of communication. The Learning targets are also held in the teacher's own records and are passed on to other colleagues as necessary. This transfer of information is most likely to take place annually but can be required more frequently, especially if a science group is taught by more than one teacher.

Learning targets, as well as being helpful for individual pupils, can also be used to support next steps in learning for groups of pupils, classes, year groups or a Key Stage. The following shows examples of how Learning targets could be used in science.

Transitional

Learning target for a Key Stage

The HSW skills of all pupils are improved

Learning target Year 7

Pupils can use a variety of investigative approaches in their own investigations

Periodic

Learning target (medium-term plan)

In an investigation, pupils are able to take into account the key variables that they can and cannot control and include ways of minimising their effects

Gap found in AF4. Used to inform targets

Day-to-day

Individual or group Learning target

'In our next investigation we will identify which variables can be changed and which cannot'

Day-to-day assessment is used to inform teacher–pupil and pupil–pupil dialogue

Personal pupil Learning target 'To improve I need to be able to:

plan the next investigation and tell my teacher which variable I will change which variables I will keep the same which variable I will measure.'

Review pupils' progress to identify learning gaps and negotiate their Learning targets

Field of sunflowers by Christophe Libert © SXC 2010 Sunflowers by Anders Rosenlund © SXC 2010 Sunflower seeds by Jason Anthony © SXC 2010

2.3 Involving pupils

The aim of target setting is to make an impact on pupils' learning and achievement, so it is more effective if pupils participate in deciding their Learning targets. This will lead to greater ownership of the targets, independence in learning and increased confidence. Wherever possible, pupils should be encouraged to monitor their own progress towards their targets with support from teachers and assistants and, as they mature, to take more responsibility for this process.

Discussions about Learning targets, and what pupils might need to do as a next step, will help the pupils to recognise when teaching is addressing their needs. Pupils will know that they are being listened to and that their views are valued.

Pupils need to:	Adults need to:
Understand the importance of feedback and target setting in making progress in science	Give information and guidance to make choices
Have the opportunity to articulate their feelings as learners	Provide a supportive, safe environment and also challenge
Participate in discussion	Listen actively to pupils, and maximise opportunities for discussion
Indicate their views	Incorporate these views into planned actions

(A useful resource is Maximising progress: Ensuring the attainment of pupils with SEN – Part 2: Approaches to learning and teaching in the mainstream classroom, which can be found on the National Strategies web area. Go to www.standards.dcsf.gov.uk/nationalstrategies and search using Ensuring the attainment of pupils with SEN).

3. Success criteria

3.1 What are success criteria?

By using success criteria, pupils can develop their understanding of what they need to do or show to achieve the learning outcomes. In this context success criteria are the statements that help pupils recognise whether they have been successful in reaching their Learning targets. These can be set each lesson, or over a longer time period, allowing pupils to see what 'good' looks like.

Success criteria spell out the steps required to achieve the learning outcome and offer explicit guidance on how to be successful.

Success criteria are:

- linked to the learning outcome
- specific to an activity
- discussed and agreed with the pupils prior to beginning the learning activity
- scaffolded to focus pupils while they are engaged in the activity
- used as the basis for feedback and for peer and self-assessment.

For more information on structuring learning, refer to Unit 1: Lesson scaffolding: Structuring learning to develop Quality First teaching in science, which can be found on the National Strategies web area. Go to www.standards.dcsf.gov.uk/nationalstrategies and search using DCSF ref: 00932-2009PDF-EN-01.

3.2 Why use success criteria?

Success criteria help pupils understand what they are trying to learn and why, together with what is expected of them. They are vital in helping pupils to understand how they have been successful in any task or activity and hence are essential in the AfL and APP process.

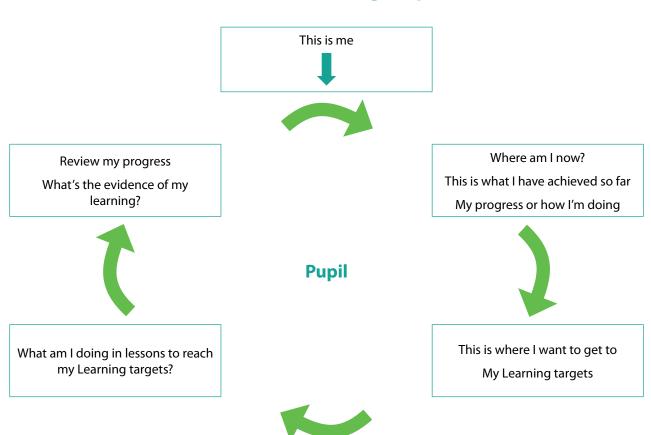
Pupils who have experience of negotiating and working to success criteria are more able to use them to assess their own achievements and identify areas for improvement without relying upon others for guidance. Thus they develop an independent approach to learning – a vital learning and life skill.

3.3 How to set success criteria

Pupils can be helped in developing their own success criteria by:

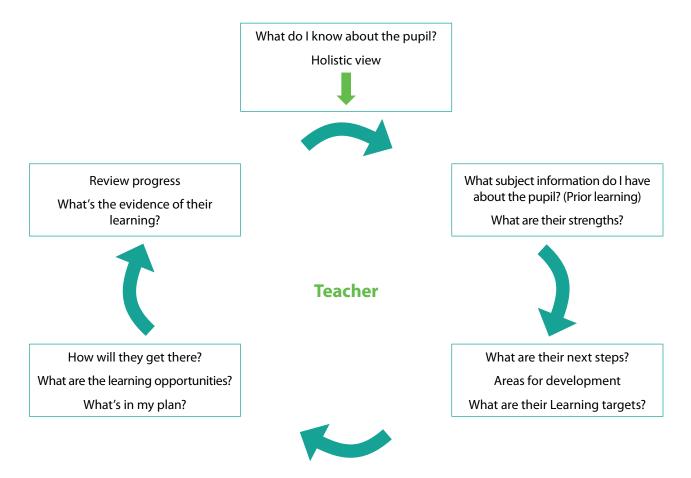
- modelling the process for them
- allowing time to discuss the criteria
- letting the pupils work in groups to practise creating and using the criteria
- putting the criteria into pupil-friendly language.

© Crown copyright 2010 00061-2010BKT-EN


Learning targets in science

4. Using the resources

4.1 Models of learning


The following diagrams are two simple models of learning from two different perspectives: the *pupil's* and the *teacher's*. The effective use of Learning targets depends on understanding the thinking and learning that is going on at each stage.

Model of learning: Pupil

00061-2010BKT-EN © Crown copyright 2010

Model of learning: Teacher

4.2 How to use the supporting resources

The tables in this resource can be used to unpick the assessment criteria in the Assessment Guidelines for APP so as to provide pupils with Learning targets. These can be used at whatever layer is identified as appropriate. They could be used flexibly to:

- develop Learning Ladders for a particular context
- inform longer-term periodic targets for improvement
- develop success criteria to help pupils understand what 'good' looks like.

4.3 Using Learning target Level Ladders

Before constructing a **Learning target Level Ladder**, a teacher would need to:

- identify gaps in learning, through periodic or day-to-day assessment
- know what range of levels the class is working at
- check the appropriate Learning targets
- use the appropriate form and copy and paste the Learning targets from the relevant table into the column
- use the Learning Ladder to consider whether the scheme of learning can be adjusted to allow pupils the opportunity to address the gaps in their learning
- plan lessons that fit the context.

© Crown copyright 2010 00061-2010BKT-EN

Examples of Learning Ladders

A template to use for constructing bespoke Learning target Level Ladders can be found within the resource file that accompanies this resource.

1. The first example shows a Learning Ladder within the context of investigating energy transfer by sound in different mediums; it concentrates on Assessment Focus 5, and covers levels 4–6.

Learning target Level Ladder

Contex	Context: Investigating energy transfer by sound in different mediums Assessment Focus 5		
Level	Learning target	What's my evidence?	
6	 I can explain why results might be different from my prediction I can explain any anomalous results using scientific knowledge and understanding 		
	 I can comment on how reliable the range of data is, taking into consideration repeat readings, equipment and procedure 		
5	 I can recognise data that does not fit a pattern or trend I can identify anomalies and explain why they do not fit the pattern 		
4	 I can compare two or more sets of data to look for differences I can state the evidence used in making my conclusion 		

My next steps are:	Teacher's feedback:
What	What you did well:
How	How you did it well:
When	What you need to do next:

2. The second example shows a Learning Ladder within the context of explaining energy transfer in unfamiliar contexts, for example double glazing/vacuum flask, using the concept of heat energy transfer; it concentrates on Assessment Focus 1 and covers levels 4–6.

Context: Explaining energy transfer in unfamiliar contexts, for example double glazing/vacuum flask, using the concept of heat energy transfer Assessment Focus 1

Level	Learning target	What's my evidence?
6	 I can say what is good or bad about a model I can explain how ideas change as people working in science discuss new evidence 	
5	 I can develop a description that uses abstract ideas or models of more than one step I can suggest solutions to problems using scientific ideas 	
4	 I can describe scientific ideas using a physical model I can use scientific facts when describing processes 	

My next steps are:	Teacher's feedback:
What	What you did well:
How	How you did it well:
When	What you need to do next:

Learning targets in science

4.4 Learning mats

Learning mats enable a teacher to display a number of Learning targets for either a pupil or a group of pupils. Printing them as a mat allows pupils to be regularly reminded of what their targets are.

Select the Learning targets at the appropriate level and within the appropriate Assessment Focus to compile a bespoke mat for pupils.

Examples of learning mat templates and completed learning mats can be found in Appendix 2 of this document and in the resources that accompany this document.

4.5 Top tips

- Start each Learning target with:
 - I can...
 - My next step is...
 - I need to be able to...
- Learning targets can be generic; you can add words specific to the context if this helps pupils to be clearer about what they have to do to be successful.
- Be prepared to break down the Learning targets further to provide specific success criteria for a lesson.
- Be alert to pupils' discussions where you can hear them showing they have reached their Learning target.
- Plan time to review where pupils are and to talk to pupils within a lesson so that you can negotiate Learning targets.
- Enjoy the realisation that pupils are managing their own learning, and experiencing success in science.

5. Learning targets linked to APP criteria

Learning targets can be developed in two ways, based on the APP criteria:

- 1. Learning targets can be based on the Assessment Focuses. In the examples below, the Learning targets are organised into five tables using the five APP Assessment Focuses. Each Assessment Focus has four threads to allow teachers to track progression in this particular area of science. The examples indicate how the Learning targets support pupils so that they are able to move to the next level of learning in science. Sections 5.1–5.5 on pages 17–61 give the five tables for Learning targets within each Assessment Focus.
- 2. Learning targets can be based on each attainment level as shown in sections 6.1–6.7 on pages 62–86.

5.1 Assessment Focus 1: Thinking scientifically

AF1 Thread	Using models for and in explanations	Weighing up evidence to construct arguments and explanations	The process of developing ideas including the role of the scientific community	Provisional nature of scientific evidence
Level 8 APP assessment criteria	 Describe or explain processes or phenomena, logically and in detail, making use of abstract ideas and models from different areas of science 	 Select and justify an appropriate approach to evaluating the relative importance of a number of different factors in explanations or arguments 	 Analyse the development of so emergence of new, accepted in 	
Examples of some contexts to support lesson planning	 When explaining induced magnetism, link domain and particle models following independent research When explaining molecular movement across cell membranes, link ideas about cell membrane structure and particle models, and ideas about energy transfer 	 When deciding whether an organ transplant should be given to a smoker, justify the approach that weighs up all the available evidence that would influence the decision When deciding whether to give a child the triple or individual MMR vaccines, pupils can take a critical stance that takes into account the limitations of the scientific evidence and also the emotive opinions that surround this decision 	how a particular model was de information When investigating human evo	dels of the atom, pupils explore veloped in the light of new plution, pupils explore how new nave led to changes in scientific
Level 8 Learning targets While learning aboutpupils can	 Explain events logically linking different ideas or models beyond the level expected in normal science lessons Use language that is ambitious, clear and relevant to the context Use criteria to evaluate the appropriateness of a model 	 Demonstrate a clear, critical stance on scientific ideas using evidence Describe the limitations of evidence and the effect of this on the credibility of an argument Justify an approach to evaluating an explanation or argument 	the available evidenceExplain why scientific ideas are	ne about over time by investigating e provisional retations of evidence can lead to

Level 7 APP assessment criteria	 Make explicit connections between abstract ideas and/ or models in explaining processes or phenomena 	 Employ a systematic approach in deciding the relative importance of a number of scientific factors when explaining processes or phenomena 	 Explain the processes by which ideas and evidence are accepted or rejected by the scientific community 	 Explain how different pieces of evidence support accepted scientific ideas or contribute to questions that science cannot fully answer
Examples of some contexts to support lesson planning	 When explaining rock formation, link the ideas of particles, energy and forces When explaining the effect of bleaching of corals, link the ideas of photosynthesis, symbiosis and interdependence 	 When weighing up the reasons for the siting of a mobile phone mast/wind turbine, explain the scientific ideas that contribute to the argument When solving a mystery as to why the dinosaurs died out, explain the various theories and why certain pieces of evidence are the most important in supporting particular theories 	 When considering the use of sunbeds, use a values continuum to explore other people's viewpoints and question the validity of their evidence When considering global warming as a phenomenon, question the use of evidence to support particular points of view 	 When making suggestions for solving the world food problem, show how evidence for the use of genetically modified (GM) crops has generated questions that cannot yet be answered When debating the evidence for global warming, generate a piece of discursive writing When trying to explain the origins of the universe, use a variety of evidence from different sources, for example information from the Hubble telescope, to put forward an accepted idea
Level 7 Learning targets While learning aboutpupils can	 Develop original models to explain ideas and events Justify the selection of a model to explain an idea Explain events explicitly linking different ideas or models 	 Consider and weigh up all the evidence available Explain how and why some pieces of evidence are more important than others when explaining scientific ideas or events 	 Explain how scientists accept or reject each others' ideas and evidence using peer review Question assumptions, prejudice and bias in scientific evidence 	 Explain how evidence has supported accepted scientific ideas Explain how evidence can enable further questions to be asked Explain how emerging evidence is helping to explain scientific theories

Level 6 APP
assessment
criteria

- Use abstract ideas or models or multiple factors when explaining processes or phenomena
- Identify the strengths and weaknesses of particular models
- Describe some scientific evidence that supports or refutes particular ideas or arguments, including those in development
- Explain how new scientific evidence is discussed and interpreted by the scientific community and how this may lead to changes in scientific ideas
- Describe some scientific evidence that supports or refutes particular ideas or arguments, including those in development

Examples of some contexts to support lesson planning

- When explaining optical anomalies that depend on refraction of light, use an accepted analogy correctly, for example tank tracks or oars work at different speeds leading to change of direction. Provide reasons why this is a good model
- When explaining the manufacture of soft centres in chocolates, use poppet beads to represent molecules being broken down into soluble molecules by enzymes
- When explaining unfamiliar observations that show conduction and or convection, use for example the energy transfer model
- For any model used pupils can give strengths and weaknesses

- When comparing ideas about rotation of the Farth around the sun, identify evidence and present this in a different form, showing how this supports or refutes the different ideas
- When discussing the emergence of ideas about matter, describe the changes in ideas that have happened over time
- Using research into the ideas about how blood circulates. describe the changes in ideas that have happened over time
- When debating about whether fashion shoes should be banned, provide evidence presented from different points of view, some of which may be influenced by a particular interest, for example shoe manufacturers, teenage girls or the medical profession
- When working on a forensic problem, recognise where ideas have changed when new evidence is presented and discussed by the forensics team
- When comparing ideas about rotation of the Earth around the sun, identify

Level 6 Learning targets

While learning about...pupils can

00061-2010BKT-EN

- Explain logically ideas or events using abstract models in new situations
- Say what is good or bad about a model
- Select the most appropriate model to explain an idea
- Describe evidence which supports or disproves accepted or developing scientific ideas
- Explain how ideas change as people working in science discuss new evidence
- Explain how ideas change as a result of interpreting evidence in different ways

Level 5 APP assessment criteria	 Use abstract ideas or more of more than one step who describing processes or phenomena Explain processes or phenomena, suggest solutions to problems or answer questions by draw on abstract ideas or modern. 	the development of scientific ideas	Recognise scientific questions that do not yet have definitive answers
Examples of some contexts to support lesson planning	 When explaining how an electric circuit works, pupuse an accepted model, fexample water flow When explaining the diffusion of perfume in a room, pupils use an analofor example a crowd leav a football match, or the particle model 	to consider the evidence and come up with innovative solutions, for example designing a straw bridge to withstand the forces experienced during flooding Using research into inventors, for example, Archimedes, Dyson, Trevor Baylis, identify the ingenious ideas and how these enabled	When considering the mystery of possible life on Mars or other planets, pupils realise that we cannot confidently answer this question yet
Level 5 Learning targets While learning aboutpupils can	 Explain ideas or events uses abstract models in familia situations Develop a description the uses abstract ideas or moder of more than one step Suggest solutions to problemsing scientific ideas 	different and imaginative ways and how this can be linked to the use of evidence or vice versa	Give examples of instances where science cannot answer all our questions

Level 4 APP assessment criteria	•	Use simple models to describe scientific ideas	•	Identify scientific evidence that is being used to support or refute ideas or arguments	•	Use scientific ideas when describing simple processes or phenomena	•	Identify scientific evidence that is being used to support or refute ideas or arguments
Examples of some contexts to support lesson planning	•	Use a model of the solar system and say how this is used to show distance between planets When describing absorption of food from the gut, pupils can use tights to represent the gut wall	•	When researching, pupils can sort evidence into for or against, for example: - drinking red wine in moderation - use of antibacterial hand wash/household products - the siting of wind turbines	•	Describe the mechanical and chemical process of digestion as food passes through the gut Describe, using scientific words, what happens to an ice cube left on the window sill Describe, using scientific words, what happens to lamps in an electrical circuit	•	When researching, sort evidence into for or against, for example: - drinking red wine in moderation - use of antibacterial hand wash/household products - the siting of wind turbines
Level 4 Learning targets While learning aboutpupils can	•	Describe scientific ideas using scientific terms correctly Describe scientific ideas using a physical model	•	Recognise when scientific evidence is for or against an argument Recognise when scientific evidence supports an idea or not	•	Use scientific language to describe processes and observations Use scientific facts when describing processes and observations	•	Recognise when scientific evidence is for or against an argument Recognise when scientific evidence supports an idea or not

Level 3 APP assessment criteria	 Represent things in the real world using simple physical models 	 Identify differences, similarities or changes related to simple scientific ideas, processes or phenomena Use straightforward scientific evidence to answer questions, or to support their findings 	Respond to ideas given to them to answer questions or suggest solutions to problems
Examples of some contexts to support lesson planning	 When representing the solar system, make papier mâché models of the planets When representing the structure of a volcano, make a 3D model Model the freezing and thawing of rocks using water frozen in a bottle 	 When observing, sort and classify organisms/materials Sequence events, for example: identify changes during and after filtering growth/movement of an object on different surfaces Use evidence or support findings from simple observations/measurements to answer questions, for example: 'How do you think changing the type of surface/temperature/ amount of light will affect?' 	 Answer questions like: Why do you think there are fewer daisies near the wall? Why do you think the shoe moves less well on the surface? Where do you think the water in the puddle has gone? How can we keep our drink hotter for longer?
Level 3 Learning targets While learning aboutpupils can	 Make a model to represent something that they have seen 	 Identify differences, similarities or changes within things to do with science Use scientific evidence and ideas to answer questions 	 Answer questions/solve problems Support what they have found out using their own experience

Level 2 APP assessment criteria	•	Make comparisons between basic features or components of objects, living things or events Sort and group objects, living things or events on the basis of what they have observed	•	Draw on their observations and ideas to offer answers to questions Respond to suggestions to identify some evidence (in the form of information, observations or measurements) needed to answer a question	
Examples of some contexts to support lesson planning	•	Locate and collect relevant information, for example, make observations of plants and animals, and group them according to features When using an 'Odd one out' strategy, give three words and when asked to identify the odd one out give reason(s) for their choice; for example, water, sand and ice	•	When investigating filtration to separate sand from salt water, identify that the sand has separated and this process can be used to separate a different solid from a liquid When 'solving a crime', pupils can select the evidence provided that could be used to catch the criminal	
Level 2 Learning targets While learning aboutpupils can	•	Compare features or components of objects, living things or events Use observations to group objects, living things or events	•	Use what they see and their own ideas to offer answers to questions Use help to identify evidence needed to answer a question	

	0	3
	_	
	7	₹
	۶	2
	2	2
	=	Š
	Ξ	
	۶	3
	_	,
1	C	3
•	<	ς
	Ξ	3
(C	5
•		₹
	Ξ	4
	:	Ī,
	ņ	2
	C	Ę
	200	Ξ
	_	-

Level 1 APP assessment criteria	 Recognise basic features of objects, living things or events 	Ask questions stimulated by their exploration of their world
		Draw on their everyday experience to help answer questions
		 Respond to suggestions to identify some evidence (in the form of information, observations or measurements) that has been used to answer a question

00061-2010BKT-EN

5.2 Assessment Focus 2: Understanding the applications and implications of science

AF2 Thread	Effect of societal norms (political, social, cultural, economic) on science	Creative use of scientific ideas to bring about technological developments	Implications, benefits and drawbacks of scientific and technological development of society and the environment	How science relates to jobs and roles
Level 8 APP assessment criteria	Describe ways in which the values of a society influence the nature of the science developed in that society or period of history	 Explain the unintended consequences that may arise from scientific and technological developments 	 Make balanced judgements about particular scientific or technological developments by evaluating the economic ethical/moral, social or cultural implications Evaluate the effects of scientific or technological developments on society as a whole 	
Examples of some contexts to support lesson planning	 When discussing the role of science in solving problems, consider and evaluate a range of issues that can arise as a result; for example, stem cell research, human embryology and fertilisation issues When researching the discovery of Mendel's laws of inheritance and the implications for society at the time, consider the interplay between scientific theory and evidence 	 When considering benefits, explain the unintended consequences and their impact; for example: use of antibiotics in animal feeds and the over-prescription of antibiotics, leading to antibiotic-tolerant bacteria and superbugs use of DDT in malaria eradication, and bioaccumulation in the food web 	 When exploring how the World Wide Web has supported the development of a global community, evaluate the impact of economic, communication and scientific development When debating, include arguments for the economic ethical/moral, social or cultural implications of scientific and technological development of society and the environment to inform balanced argument; for example: 	

	 When researching G8 summit and factors contributing to global warming industrial development of materials from recycled plastics tyres socioeconomic limitations of recycling plants describe how media and pressure groups influence attitudes in society and political decisions 	 when researching the 'spinoff' from Space technology used in food, medical and engineering contexts, for example: Dacron for repairing septal defects in hearts dehydrated convenience food cadmium battery disposal – toxic waste accidental discovery of penicillin identify and explain any unintended consequences of the developments 	 embryo selection for sibling donor therapy (refer to Jodie Picoult: My Sister's Keeper) xenotransplantation (refer to Malorie Blackman: Pig Heart Boy) use of dispersants on oil spillages building the Severn barrage
Level 8 Learning targets While learning aboutpupils can	 Describe how the values of society influence scientific or technological developments Describe how society has caused changes in scientific or technological developments Describe how science has changed through history 	Identify and explain how scientific and technological developments have been used in ways that were not intended	 Evaluate how and why scientific or technological developments have had an economic impact on society Evaluate how and why scientific or technological developments have influenced different cultures Evaluate how and why scientific or technological developments can have ethical or moral consequences Evaluate how and why scientific and technological developments have influenced society Evaluate the ethical and moral issues faced by people who use science or technology in their jobs

Level 7 APP assessment criteria sessment criteria arguments for and against scientific or technological developments Suggest ways in which scientific and technological developments may be influenced Examples of some contexts to support lesson planning Examples of some contexts of when discussing or debating, consider economic, ethical, political, cultural and social issues, for example growing new body parts through stem-cell technology/ designer babies When evaluating, consider the strength of the link between evidence and conclusions; for example: - factors that affect the growth of the human embryo and foetus (smoking, diets, drugs) - siting of new housing/					
some contexts to support lesson planning consider economic, ethical, political, cultural and social issues, for example growing new body parts through stem-cell technology/ designer babies When evaluating, consider the strength of the link between evidence and conclusions; for example: When evaluating, consider the strength of the link between evidence and conclusions; for example: factors that affect the growth of the human embryo and foetus (smoking, diets, drugs) siting of new housing/ some consider economic, ethical, political, cultural and social issues, for example: Mendeleev and his production of the Periodic Table through to the models of the structure of the atom and how this has led to further developments in understanding of atomic structure, for example using X-ray crystallography Contemporary examples of new inventions: - wind-up radio/torch between the idea and follow-up development, for example: strength of the link between evidence and conclusions; for example: - climate change and global warming - heavy metals from effluent accumulating in the food chain; for example, mysterious deaths in Minimata, Japan, 1949–1956 - how the knowledge and understanding of the HIV virus and its	assessment	moral, social or cultural arguments for and against scientific or technological developments Suggest ways in which scientific and technological developments may be	in science and technology generates ideas for future	discoveries can change world	
developing countries – provision of solar cells to transfer energy to simple devices - development of cars to reduce emissions - Recent contemporary inventions: - hand dryer that blows not heats - bagless vacuum cleaner - bladeless desk fan	some contexts to support lesson	consider economic, ethical, political, cultural and social issues, for example growing new body parts through stem-cell technology/ designer babies When evaluating, consider the strength of the link between evidence and conclusions; for example: - factors that affect the growth of the human embryo and foetus (smoking, diets, drugs) - siting of new housing/ leisure development/ chemical plant/quarry on green belt - development of cars to	between the idea and follow-up development, for example: - Mendeleev and his production of the Periodic Table through to the models of the structure of the atom and how this has led to further developments in understanding of atomic structure, for example using X-ray crystallography - Contemporary examples of new inventions: - wind-up radio/torch - developing countries – provision of solar cells to transfer energy to simple devices - Recent contemporary inventions: - hand dryer that blows not heats - bagless vacuum cleaner	accepted views consider the strength of the link between evidence and conclusions; for example: - climate change and global warming - heavy metals from effluent accumulating in the food chain; for example, mysterious deaths in Minimata, Japan, 1949–1956 - how the knowledge and understanding of the HIV virus and its transmission changed	

Level 7 Learning targets While learning aboutpupils can	•	Use economic, social or cultural arguments to justify scientific or technological developments Argue how ethical and moral issues have influenced science and technological	 Explain how creative thinking has developed science and technology Explain how science has changed the world around us changed the world around us generates ideas for future research 	
	•	development Evaluate how science and technology have impacted on different cultures Argue how economics have influenced scientific and		
	•	technological development Suggest ways in which scientific and technological developments may be influenced by economic, cultural and societal factors		

Level 5 APP assessment criteria	 Identify ethical or moral issues linked to scientific or technological developments Describe different viewpoints a range of people may have about scientific or technological developments 	 Link applications of science or technology to their underpinning scientific ideas Indicate how scientific or technological developments may affect different groups of people in different ways
Examples of some contexts to support lesson planning	 When researching, suggest why: an athlete may/may not consider taking performance-enhancing drugs the use of chemicals to stimulate growth in plants may be promoted/ prevented the use of crop plants genetically engineered to make them resistant to weedkillers may be promoted/ prevented research breeding programmes may be advocated/barred when considering species facing extinction Describe the different views people have about wind farms 	 When researching new applications of science or technology, explore links to scientific concepts, for example energy transfer in a: refrigerator oven vacuum flask greenhouse When considering the effects on different groups of people, describe, for example: the impact of vaccination/immunisation programmes, such as smallpox/BCG/MMR the impact of acid rain on buildings
Level 5 Learning targets While learning aboutpupils can	 Consider whether it is right or wrong to use different types of technology and science Describe the views people have about using science and technology 	 Describe how science and technology affect people Describe how scientific ideas have been developed and used

Level 4 APP assessment criteria		•	Recognise applications of specific scientific ideas Describe some simple positive and negative consequences of scientific and technological developments	•	Identify aspects of science used within particular jobs or roles
Examples of some contexts to support lesson planning		•	When considering new ideas, explore the positives and negatives; for example of: - low-energy light bulbs - increased availability of non-seasonal fruits and vegetables - recycling rubbish - household chemicals Explore how sports shoes help players to not slip in games like basketball	•	When considering how science is used in jobs, make links, for example: - hairdressers use bleach to change hair colour, chemicals to neutralise perms and heat to straighten or dry hair - swimming pool attendants use chemicals to kill microbes - dieticians use their knowledge of nutrition to provide a balanced diet for different patients
Level 4 Learning targets While learning aboutpupils can		•	Identify the good and bad uses of technology and science Identify how science is used in different ways in everyday life	•	Identify aspects of science in specific jobs Identify how different jobs use science

Level 3 APP assessment criteria		•	Link applications to specific characteristics or properties Explain the purposes of a variety of scientific or technological developments	•	Identify aspects of our lives, or of the work that people do, which are based on scientific ideas
Examples Eof some contexts to support lesson planning		•	When considering a new development in science and technology, suggest why it is an improvement; for example: - describe how and why a mobile phone is used - describe how mobile phones have changed over time Explain why materials are chosen for a purpose, for example: - waterproof - elastic - lightweight Explain why a refrigerator is used to store food	•	 When placing learning within a relevant contemporary context, recognise why: a hairdresser uses chemicals to colour and treat hair swimming pool attendants use chemicals to kill germs school cooks use their knowledge of nutrition to provide healthy meals
Level 3 Learning targets While learning aboutpupils can		•	Say how and why some science or technology is used Say how and why some science or technology has changed	•	Say how science is used in their life or in some jobs

Level 2 APP assessment criteria		•	Identify scientific or technological phenomena and say whether or not they are helpful Describe, in familiar contexts, how science helps people do things Express personal feelings or opinions about scientific or technological phenomena	•	Identify people who use science to help others
Examples of some contexts to support lesson planning		•	When researching, describe differences in dietary needs of different people When visiting/observing, say how they feel about a sewage plant/power station/wind farm/l-phone/ultrasound image/X-ray/growing plant When considering everyday items such as a dental brace/vacuum flask/electrical devices that make household tasks easier, describe what each does When researching, describe how antibacterial handwash can prevent spread of infections in hospitals	•	When considering how science might help others: - explain why wearing ear defenders helps people who work in loud environments - suggest how these people use science to help others: - dentist - nurse - vet - farmer - hairdresser - cook
Level 2 Learning targets Whilst learning aboutpupils can		•	Identify scientific or technological phenomena and say whether or not they are helpful Describe, in familiar contexts, how science helps people do things Express personal feelings or opinions about scientific or technological phenomena	•	Identify people who use science to help others

The National Strategies Learning targets in science

© Crown copyright 2010	
_	

Level 1 APP assessment criteria		•	Recognise scientific and technological developments that help us	
		•	Identify a link to science in familiar objects or contexts	

5.3 Assessment Focus 3: Communicating and collaborating in science

AF3 Thread	Using appropriate presentation skills to enhance communication of scientific findings and arguments	Explaining ideas and evidence using appropriate conventions, terminology and symbols	vie	esenting a range of ws judging any possible srepresentation		ientists communicating orldwide using conventions
Level 8 APP assessment criteria	 Present robust and well-struct counter-arguments in a variety 	ured explanations, arguments or of ways	•	Critically evaluate information and evidence from various sources, explaining limitations, misrepresentation or lack of balance	•	Suggest the specialisms and skills that would be needed to solve particular scientific problems or to generate particular new scientific or technological developments
Examples of some contexts to support lesson planning	context and then apply these targument When presenting an explanati pupils use a range of methods (e.g. PowerPoint, graphics, spodemonstration) When debating the need for p	effective argument in a different features in presenting their own on about how the eye works, to make it clear to their audience ken explanation, video, audio, ublic transport, pupils collect use this successfully to support their	•	When evaluating the merits of cloning animals, pupils take into account limitations in the available evidence when making a judgement about whether the process is beneficial When presenting an argument about legal speed limits, pupils evaluate the strength of evidence presented by organisations like the 'Safety Camera Partnership' and motoring magazines in order to argue their case	•	While considering the design of the athletics stadium for the Olympics, pupils suggest which science specialisms it might be useful to bring together While considering the development of prosthetic limbs to enhance athletic performance, pupils suggest which science specialisms might be useful to the process

	0	9
	(
	7	3
	₹	Ė
	Ξ	3
	ç)
	۲	3
•	₹	٤
,	Ξ	₹.
١	È	5
	7	+
	S	5
	Ξ	3
	٦	_

		When developing their ideas about the importance of evidence-based arguments, pupils evaluate claims made by manufacturers of controversial products to arrive at a balanced view about whether there is a convincing scientific basis to support the product (e.g. dowsing rods or detox footbaths). They research using information from primary (collecting their own data) and secondary sources	
Level 8 Learning targets While learning aboutpupils can	 Present well-structured explanations, arguments or counter- arguments in a variety of ways that stand up to challenge 	 Evaluate information to identify limitations, misrepresentation and/or bias Suggest which scientific specialisms would be required to solve specific problems or generate new scientific developments 	

Level 7 APP assessment criteria	 Effectively represent abstract ideas using appropriate symbols diagrams and different kinds of graphs in presenting explanati and arguments 		 Explain how scientists with different specialisms and skills have contributed to particular scientific or technological developments
Examples of some contexts to support lesson planning	 When investigating the outcomes of genetic combinations, puexplain why inbreeding can lead to inherited disorders, using punnet squares to help When explaining chemical reactions, pupils use particle mode and symbol equations to represent clearly what is happenin When presenting an argument for using energy-saving light bulbs, pupils use energy-accounting systems, including Sanl diagrams, to explain their case 	pupils are guided to critique the evidence presented against MMR In a context such as GM crops, climate change or	 From a list of science specialists, pupils find out what they do and identify who might be useful in a team; for example, when crossing the Arctic on foot, or sailing the Atlantic Pupils research the range of different specialists involved in developing a Formula One car Pupils consider advantages and disadvantages of scientists with different specialisms working together, for example, an environmentalist, a meteorologist and an engineer collaborating on developing a wind farm
Level 7 Learning targets While learning aboutpupils can	 Present explanations and arguments about abstract ideas us appropriate symbols, diagrams and graphs 	 Explain how information and evidence may be manipulated to influence people 	 Explain how scientists, who are experts in different areas, have worked together to contribute to an idea or development

Level 6 APP assessment criteria	 Choose forms to communicate qualitative or quantitative data appropriate to the data and the purpose of the communication 	 Distinguish between data and information from primary sources, secondary sources and simulations, and present them in the most appropriate form 	 Identify lack of balance in the presentation of information or evidence 	
Examples of some contexts to support lesson planning	 When analysing data on the solar system, pupils choose appropriate ways to display the different data sets When presenting information about air pollution, explain why they would choose different communication methods for different audiences; for example, children or adults When analysing data on height distribution in the class, discuss how best to present the data and what are the advantages of histograms 	 When investigating the effect of exercise on heart rate, compare results with secondary data and compare and contrast both findings clearly When investigating the reaction between acid and metals, use experimental data, plus data from secondary sources, to construct a reactivity series. Comment on any contradictions between the two sources of evidence When studying elasticity, use simulation software about bouncing balls as well as first-hand data to develop a conclusion about relationships between height of drop and height of bounce. Present findings clearly, distinguishing between the two sources of evidence 	 When presenting an argument about a controversial topic, for example. probiotic yogurt drinks or anti-rust paint, highlight the claims made in the advertisements and identify whether they are backed up by evidence When learning about bias in the presentation of science, compare articles about health risks of mobile phones/masts from different newspapers to identify examples of sensationalisation and discuss the reliability of the sources of evidence 	
Level 6 Learning targets While learning aboutpupils can	 Independently select the most useful ways to present qualitative and quantitative data Explain which type of presentation is best for the data or the task 	 Recognise the difference between a primary and a secondary source of evidence and information and know when the evidence comes from a simulation Present the different kinds of evidence clearly 	Identify bias in information or evidence	

Level 5 APP assessment criteria	•	Decide on the most appropriate formats to present sets of scientific data, such as using line graphs for continuous variables	 Use appropriate scientific and mathematical conventions and terminology to communicate abstract ideas Distinguish betwood and scientific evictorial contexts related and use evidence than opinion to so or challenge scientific arguments 	idence in to science, e rather support	Suggest how collaborative approaches to specific experiments or investigations may improve the evidence collected
Examples of some contexts to support lesson planning	•	When analysing changes in populations over time, decide to draw a line graph and say why the decision was made When presenting data about cooling by evaporation decide to combine two sets of results (of the temperature drop of a thermometer wrapped with water-soaked cotton wool and one wrapped with alcoholsoaked cotton wool) into a single table When analysing data on global warming, explain how changing the scale on a graph can distort the message	 When explaining their ideas about why plants in a rain forest grow quickly, use correct scientific words When learning about elements and compounds, represent these using correct chemical symbols When comparing the efficiency of different electrical appliances, use simple Sankey diagrams to show how the amount of energy dissipated varies When explaining of smoking, sort cards into evider opinion When examining made by manufar of anti-rust paint which are based evidence When examining made by manufar of anti-rust paint which are based evidence When examining made by manufar of anti-rust paint which are based evidence When explaining of smoking, sort cards into evider opinion 	statement nce and g claims acturers ts, decide on scientific g the d cameras,	When investigating what happens when magnesium burns in air, record change of mass in a class table. Explain how the cumulative evidence for an increase of mass links to the theory of oxidation When surveying plant populations in a field, accumulate evidence from individual quadrants to strengthen their conclusion When investigating the distance moved by trolleys of different mass, repeated results are generated to ensure the average is more reliable
Level 5 Learning targets While learning aboutpupils can	•	Select the most useful ways of presenting information, given a range of choices, for example when a line graph should be used rather than a bar chart	 Use clear sentences, scientific words and symbols correctly when describing abstract ideas and observations Support or challe scientific argume evidence, not open services. 	ents using	Describe how working together could improve an investigation, for example by making it more reliable

Level 4 APP

assessment

criteria

Select appropriate ways of

presenting scientific data

40

Use appropriate scientific

communicate scientific ideas,

forms of language to

Level 3 APP assessment criteria	•	Present simple scientific data in more than one way, including via tables and bar charts	•	Use scientific forms of language when communicating simple scientific ideas, processes or phenomena	•	Identify simple advantages of working together on experiments or investigations
Examples of some contexts to support lesson planning	•	When investigating habitats, use a bar chart to show the numbers of woodlice in different locations When recording the pH of various solutions, record the colour and pH in a table When recording the results from an investigation into the stretching of a spring, record the mass and length in a given table	•	When learning about electricity, use scientific words, for example, cell, battery, lamp, light bulb, and simple comparative words, for example, brighter, dimmer, higher and lower, to describe what they see When presenting data about themselves and others, use correct units; for example, height (cm) When observing solubility, say what they see happening; for example, using words such as bubbles, dissolve, disappear, solid, liquid	•	Give opportunities to work in groups and to discuss the benefits, for example: - when investigating fruit batteries, identify variables to change - when explaining circuits, form a clear explanation about how a torch works - when gathering data about change of state, discuss how to allocate different roles when heating ice
Level 3 Learning targets While learning aboutpupils can	•	Draw tables and bar charts	•	Show what has been found out with some support Use simple scientific words to describe or compare correctly Include scientific terms and symbols (e.g. units)	•	Say how working together has helped improve their learning

Level 2 APP assessment criteria	Present their ideas and evidence in appropriate ways	 Use simple scientific vocabulary to describe their ideas and observations 	 Respond to prompts by using simple texts and electronic media to find information Work together on an experiment or investigation and recognise contributions made by others
Examples of some contexts to support lesson planning	 When recording the strength of different materials, put results into a table that has been developed with help When presenting data on the size of populations in different habitats, present data in a bar chart and a table and say which is clearest and why When presenting their ideas, use arrows to show all the places where heat can be lost from a house 	When making observations about different materials, use appropriate describing words; for example, rough/ smooth, waterproof/not waterproof, shiny/dull	 When researching materials, find uses for materials like carbon and aluminium when provided with links to suitable internet sites When studying living things, use the index in a book to find the page about a given topic; for example, blood/the heart/the brain When gathering information about heat, highlight given words in a text; for example, conduction, convection When surveying a habitat, work individually and then collaboratively and compare the number of observations collected When investigating the rules of reflection, state how it was helpful to compare findings with those of others
Level 2 Learning targets While learning aboutpupils can	 Present ideas with help using simple tables, charts or diagrams 	 Use simple scientific words to describe their ideas and observations 	 Find things out when guided using books or computers Say how others have helped them when working together in a group

Level 1 APP assessment criteria Present evidence they have collected in templates provided for them Use everyday terms describe simple feat or actions of objects things or events they Communicate simpl features or compone objects, living things events they have ob appropriate forms	features or components of objects, living things or events they have observed in appropriate forms ts of and
---	---

The National Strategies
Learning targets in science

5.4 Assessment Focus 4: Using investigative approaches

AF4 Thread	investigations effectively variables within the context of		To support the gathering of evidence through collection of precise and reliable data	ass	To be aware of the risks associated with the investigative process	
APP Level 8 assessment criteria	 Justify their choice of strategies kinds of scientific questions, u understanding 	•	Adapt their approaches to practical work to control risk by consulting appropriate resources and expert advice			
Examples of some contexts to support lesson planning	 explain the choice of ligh 	planning an investigation: stify the choice of method for measuring the rate of reaction between acid and calcium carbonate explain the choice of light gates when measuring velocity of a toy car se secondary data to back up the case for immunisation				
Level 8 Learning targets While learning about pupils can	 Explain why a particular meth scientific question 	od has been chosen to answer any	 Justify their chosen method in terms of collecting reliable and precise data 	•	Change an experimental approach in order to control risks that have been identified from other sources	

Level 7 APP assessment criteria	 Formulate questions or ideas that can be investigated by synthesising information from a range of sources 	 Identify key variables in complex contexts, explaining why some cannot readily be controlled, and plan appropriate approaches to investigations to take account of this 	 Explain how to take account of sources of error in order to collect reliable data 	 Recognise the need for risk assessments and consult, and act on, appropriate sources of information
Examples of some contexts to support lesson planning	 After observing a phenomenon, use a variety of sources to inform planning: how to improve the Visking tubing model to demonstrate digestion and absorption of starch investigate how matter is conserved in a reaction the most appropriate method to determine the effect of available energy sources on the distribution and types of plants and animals 	 Identify variables which cannot be controlled when investigating: rates of respiration in seeds the strength of an electromagnet rates of reaction between acid and calcium carbonate 	 While planning: an investigation on animal behaviour an investigation into melting and boiling points of different substances an investigation into the energy in different foods explain how to try to control sources of error 	 While using the resources available to them (technician, teacher, hazards posters, etc.) ensure work is carried out safely when: handling and storing microbes extracting chlorophyll and using flammable liquids carrying out electrolysis
Level 7 Learning targets While learning about pupils can	 Having considered information from a variety of sources, come up with a question or idea to investigate 	 Plan for investigations, taking into account those variables that cannot be controlled, and include ways of minimising the effect of these 	 Explain why the data that can be collected may be inconsistent Explain what they can do to make the data more reliable 	 Consult other sources of information to check that they are working as safely as possible and inform their risk assessment skills

Level 6 APP assessment criteria	•	Collect data, choosing appropriate ranges, numbers and values for measurements and observations	 Apply scientific knowledge and understanding in the planning of investigations, identifying significant variables and recognising which are independent and which are dependent Justify their choices of data collection method and proposed number of observations and measurements 	•	Independently recognise a range of familiar risks and take action to control them
Examples of some contexts to support lesson planning	•	investigating solubility	en investigating:	•	 When working in a laboratory: keep a tidy work space avoid burning skin on hot tripods collect and put away all equipment
Level 6 Learning targets While learning aboutpupils can	•	Change the value of the independent variable in their plan and explain why they chose a particular range and number so that they could collect enough data	 Explain the difference between the independent and dependent variables used in their investigations Explain their choice: for how they will collect the data regarding the number of measurements they will take 	•	Work out for themselves when doing an experiment what the potential for harm is, by thinking ahead and taking action to avoid the risk

Level 5 APP assessment criteria	•	Explain why particular pieces of equipment or information sources are appropriate for the questions or ideas under investigation	•	Recognise significant variables in investigations, selecting the most suitable to investigate	•	Repeat sets of observations or measurements where appropriate, selecting suitable ranges and intervals	•	Make, and act on, suggestions to control obvious risks to themselves and others
Examples of some contexts to support lesson planning	•	Use appropriate information or equipment to: - research adaptation of sensory organs in different animals - explain why it is more appropriate to use a temperature sensor to measure ambient temperature over 24 hours - explain why digital ammeters are more suitable than analogue ones for battery-powered circuits	•	Identify the most significant variables to investigate when: - testing antacids - testing the activity of different enzymes - testing the amount of energy in different energy sources	•	 When investigating: respiration in seeds volumes of acid and alkali needed for neutralisation the distance travelled by a car down a ramp at different angles decide the range of measurements to be taken and whether to repeat any observations 	•	When making suggestions about safe working, include some of the following: - tying hair back - wearing safety glasses - standing up when carrying out experiments - putting bags out of the way
Level 5 Learning targets While learning aboutpupils can	•	Explain why particular pieces of equipment or information sources are appropriate for the questions or ideas under investigation	•	Recognise significant variables in investigations, selecting the most suitable to investigate	•	Repeat sets of observations or measurements where appropriate, selecting suitable ranges and intervals	•	Make, and act on, suggestions to control obvious risks to themselves and others

Level 4 APP

Select appropriate

Identify possible risks to

Decide when it is appropriate

Make sets of observations or

Level 3 APP assessment criteria	•	Select equipment or information sources from those provided to address a question or idea under investigation	•	Identify one or more control variables in investigations from those provided	•	Make some accurate observations or whole number measurements relevant to questions or ideas under investigation	•	Recognise obvious risks when prompted
Examples of some contexts to support lesson planning	•	 While investigating: how lack of water or light affects plant growth evaporation of water brightness of bulbs in a circuit select appropriate equipment 	•	 While investigating: melting different types of chocolate friction on different surfaces rate of growth of seedlings identify at least one factor to keep the same 	•	 While investigating: a plant growing a range of irreversible chemical reactions light falling on transparent, translucent and opaque objects make accurate observations or measurements 	•	Use a 'spot the hazard' activity, but with prompts
Level 3 Learning targets While learning aboutpupils can	•	Choose from a list (set) of equipment what items they would use to investigate a question or idea Choose what content they would use from some information provided to investigate a question or idea	•	Choose from a list at least one variable that needs to be kept the same in their investigation to make it a fair test	•	With help, say what has been observed (accurately) Measure accurately using whole number (+/-) measurements	•	Recognise why instructions keep them and others safe

	0	0
		2
	2	3
•	ζ	2
(2	<u>}</u> .
	7	3
	5	5

Level 2 APP assessment criteria	provided to make observe tha	gs to measure or about how to find things out or how to collect data to answer a question
Examples of some contexts to support lesson planning	grow the fastest - deciding which material reflects light best - finding out which sound is the loudest the correct equipment is used to measure and observe grow the fastest - predict simple observi	 While discussing any of the following: which tree is this leaf from? how long does it take for ice to melt? is my shadow the same all day? make appropriate suggestions about finding things out and collecting data
Level 2 Learning targets While learning aboutpupils can	how to find things out, or how to collect data to answer a question or idea they are support: - say what	Use books/ICT and ask questions to find things out Make measurements using standard and non-standard equipment Use their senses and
assessment criteria	making some simple suggestions about how to find an answer or make observations	simple equipment to make observations

5.5 Assessment Focus 5: Working critically with evidence

AF5 Thread	Evaluation of the planning and implementation of scientific investigations	Consideration of errors and anomalies	Processing and analysing data to support the evaluation process and draw conclusions	Explanation and evaluation of evidence to support the scientific process
Level 8 APP assessment criteria	 Suggest and justify improvements to experimental procedures using detailed scientific knowledge and understanding Suggest coherent strategies to take particular investigations further 	 Propose scientific explanations for unexpected observations or measurements, making allowances for anomalies 	 Process data, including using multi-step calculations and compound measures, to identify complex relationships between variables 	Critically interpret, evaluate and synthesise conflicting evidence
Examples of some contexts to support lesson planning	 When observing human body language in different situations, for example in the school canteen or in the supermarket, pupils devise qualitative and quantitative methods to record this and explain differences in behaviour When explaining chemical reactions, pupils apply their understanding of chemical bonds to predict the behaviour of materials While investigating and analysing quantitatively the noise pollution from technological applications such as headsets or earphones, suggest ways to extend the investigation 	 When investigating the behaviour of organisms, compare proposed or actual data collection by others for the same investigation and how the collection has been directed by the way the investigation was planned When investigating drug trials/placebo effects, discuss how to evaluate an investigation for unexplored variables and how this might raise uncertainty about conclusions drawn When explaining noise pollution, explore the process of a randomised control trial 	 After carrying out experiments in behaviour, structure discussions to explore how strongly the conclusions can be based on the primary evidence alone When considering rates of reaction, construct a graph using an inverse function and use this graph to draw conclusions When studying sound, produce a considered and evidence-supported response to the assertion that, although we have become better at producing sound, we are worse at managing it 	 When carrying out research into claims made in the media and scientific articles, devise criteria and evaluate claims, for example, allowing pregnancies of 'designer siblings' to provide organs or tissues for transplantation When considering and evaluating evidence from a variety of sources, for example on the use of the MMR vaccination, justify or discount sources of evidence as valid/invalid using their scientific knowledge and understanding

	0	3
	(
	5	5
	≥	٤
	Ξ	•
	ç	3
,	ζ	Š
	=	Ì
(2	2
	7	+
	۲	2
	Ξ	=
	٠	_

				When constructing and presenting a complex scientific argument, for example in the context of managing the environmental impact of an airport development plan, analyse evidence to persuade a specific audience
Level 8 Learning targets While learning aboutpupils can	 Justify improvements to a plan using detailed knowledge and understanding Suggest a well thought out strategy to take the investigation further 	 Offer a scientific explanation for unexpected data Reduce the effect of random error through discounting or re-measuring anomalies Identify systematic error through collaborative working 	 Process data using multi-step calculations Use compound measures effectively Identify complex relationships between variables 	 Analyse the evidence from all possible interpretations Synthesise evidence from a range of sources and contexts Use conflicting evidence effectively

Learning	Inel
targets	lational
in science	strategies

Level 7 APP assessment criteria	 Explain ways of modifying working methods to improve reliability 	 Assess the strength of evidence, deciding whether it is sufficient to support a conclusion Explain ways of modifying working methods to improve reliability 	 Assess the strength of evidence, deciding whether it is sufficient to support a conclusion 	 Explain how data can be interpreted in different ways and how unexpected outcomes could be significant Identify quantitative relationships between variables, using them to inform conclusions and make further predictions
Examples of some contexts to support lesson planning	 When using a range of instruments to collect local data over a longer timescale, for example over a term, and using it to model the global situation, for example acidity of rain, levels of carbon monoxide and dioxide, explain how limitations may have led to inconsistencies When evaluating the efficiency of a chemical process by calculating yields from evidence gathered, explain how planning can be changed to improve validity through increased reliability and accuracy Compare some of the scientifically accepted explanations for geological changes and what evidence would be needed to disprove them 	 When using a range of instruments to collect local data over a longer timescale, for example over a term, and using it to model the global situation, for example acidity of rain, levels of carbon monoxide and dioxide, consider how anomalies may impact on their conclusions When evaluating the efficiency of a chemical process by calculating yields from evidence gathered, plot raw data as well as mean values on graphs to demonstrate spread Compare some of the scientifically accepted explanations for geological changes and what evidence would be needed to disprove them 	 When using a range of instruments to collect local data over a longer timescale, for example over a term, and using it to model the global situation, for example. acidity of rain, levels of carbon monoxide and dioxide, compare their data with secondary evidence and explain any conflicting evidence When evaluating the efficiency of a chemical process by calculating yields from evidence gathered, pupils peer-review the conclusions drawn Compare some of the scientifically accepted explanations for geological changes and what evidence would be needed to disprove them 	 When considering data that has been used to make a biased claim, for example in make-up advertisements, or for slimming products, explain how data can be interpreted in various different ways Given data on a range of homeopathic remedies, pupils can use the data to decide whether there is a quantitative relationship between concentration and effectiveness Compare a good and a less satisfactory plan for controlling risk, and explore the difference between perceived and actual risk

Level 7 Learning targets
While learning aboutpupils can

- Explain how planning can be changed to improve validity through increased reliability and accuracy
- Explain how limitations in investigations may have led to inconsistencies
- Explain how improvements to planning will lead to the collection of more valid data

- Consider how anomalies may impact upon the conclusion
- Plot raw data as well as mean values on graphs to demonstrate spread
- Comment on the spread of data in terms of accuracy and precision
- Assess the quality and quantity of evidence to make a valid conclusion
- Use conflicting evidence effectively
- Critically evaluate the conclusions drawn by others
- Explain how data can be interpreted in different ways
- Recognise the significance of unexpected outcomes
- Identify quantitative relationships between variables
- Use evidence to make and explain further predictions

Level 6 APP

assessment

criteria

Make valid comments on the quality of their data

Select and manipulate data

and information and use them

to contribute to conclusions

Make valid comments on the

Draw conclusions that

are consistent with the evidence they have collected and explain them using scientific knowledge and

understanding

understanding

Suggest reasons based

in evidence collected

procedure

on scientific knowledge

and understanding for any

limitations or inconsistencies

conclusion

Level 6 Learning targets
While learning aboutpupils can

- Describe how the plan gives reliable and accurate collection of data
- Decide how their methods could lead to inaccuracies in the data collected
- Comment on whether they have collected enough data to come to a reliable conclusion
- Explain any anomalous results using scientific knowledge and understanding
- Explain how repeating results can lead to the identification of anomalous results
- Explain why results might be different from their prediction

- Select the most relevant data to reach a conclusion
- Explain how the selection or rejection of data can lead to different conclusions, using scientific knowledge and understanding
- Explain inconsistencies in the data, using scientific knowledge and understanding
- Comment on how reliable the range of data is, taking into consideration:
 - number of repeats
 - number of data points
 - choice of equipment
 - procedure

00061-2010BKT-EN

Level 5 APP assessment criteria	 Evaluate the effectiveness of their working methods, making practical suggestions for improving them 	 Provide straightforward explanations for differences in repeated observations or measurements 	 Draw valid conclusions that utilise more than one piece of supporting evidence, including numerical data and line graphs Interpret data in a variety of formats, recognising obvious inconsistencies
Examples of some contexts to support lesson planning	 When sampling the population of daisies on a field, explain how to ensure there is a random but representative sample When investigating the solubility of a range of solutes, suggest that it would be better to weigh the solute rather than count the number of spatulas of solute added When investigating the strength of different materials and as a result of peer review, pupils suggest how to improve their planning 	 When exploring sources of evidence related to a controversial social behaviour issue, for example, knife crime, underage drinking, bullying, develop clear criteria to enable them to recognise whether data does not fit a pattern or trend When measuring solubility: notice if a particular value does not fit the pattern use the term 'anomalous' correctly suggest that the anomaly might be caused by using too much or too little solute When learning about timescales involved in the development of the Earth, discuss the nature of the scientific data that is used as evidence 	 When investigating the transfer of energy linked to evaporation from moist surfaces, draw conclusions about how organisms control temperature, using more than one piece of evidence Discuss how manipulating a model or using an analogy could clarify an explanation of a separating technique When describing patterns within the solar system, use secondary data as evidence to justify their conclusions

Level 5 Learning targets While learning	•	Evaluate the method used to improve planning Discuss the strengths and	•	Recognise data that does not fit a pattern or trend Use the term 'anomalous	•	Use more than one piece of evidence when forming a conclusion	
aboutpupils can	•	weaknesses of their planning with others Consider whether results are reliable Describe practical suggestions that could improve planning to produce better results	•	result' correctly Recognise anomalous results in tables, charts and graphs Decide whether data matches predictions made	•	Use data, charts and graphs from primary and secondary evidence to justify their conclusion Look for alternative conclusions the data can present	

Level 4 APP assessment criteria	 Suggest improvements to their working methods, giving reasons 	p ir • D	dentify patterns in data presented in various formats, including line graphs Draw straightforward conclusions from data presented in various formats	 Identify scientific evidence they have used in drawing conclusions
Examples of some contexts to support lesson planning	 When carrying out a survey of the school grounds, identify whether a sample is representative of the whole field When listening to two ways of planning an investigation, for example separating substances, suggest one aspect from each to include in their final plan When investigating the energy content of fuels, highlight that the equipment should be protected from draughts because sometimes the flame doesn't reach the test tube 	th d d a a for contract of the	When comparing the advantages and disadvantages of innate and learned responses, for example in pigs, form conclusions from results When exploring to what extent materials can be classified by identifying their particular properties, identify which evidence they have used to form their conclusions When investigating the effect of spreading a force out over a greater area, describe a relationship in the data and make a conclusion from results	 When researching the link between the distribution of dark fur on the paws, tail and face of Siamese cats and where the body is cool, explain the link between the evidence and the conclusion When considering states of matter, explain what is between the particles and compare the strengths and weaknesses of the particle model When learning about noise pollution and hazards related to high levels of sound, use evidence to support personal viewpoints
Level 4 Learning targets While learning aboutpupils can	 Suggest more than one sensible improvement to planning Give a sensible reason for making an improvement to planning 		Describe a relationship in data to: form a conclusion from results identify which evidence they have used to form their conclusion	 State the evidence used in making their conclusion

Level 3 APP assessment criteria	Suggest improvements to their working methods	 Identify straightforward patterns in observations or in data presented in various formats, including tables, pie and bar charts Describe what they have found out in experiments or investigations, linking cause and effect
Examples of some contexts to support lesson planning	 When comparing the energy content of different foods, discuss problems with the investigation: discuss problems when investigating the time taken to dissolve different – sized indigestion tablets – pupils suggest improvements to their planning discuss problems when investigating the best insulator – pupils identify the need to keep the same thickness 	 When comparing the energy content of different foods, identify which food was the source of the most energy When investigating the time taken to dissolve different-sized indigestion tablets, link the time taken to dissolve to the size of the pieces of tablets When investigating insulators, identify which insulators are the best
Level 3 Learning targets While learning aboutpupils can	 Talk about problems they have had with their investigations Suggest an improvement to planning 	 Describe results from observations and data Link a cause to the effect they see in results Describe what has been found out in the investigation and why Identify simple patterns in data, charts and graphs

The National Strategies Learning targets in science

Level 1 APP assessment criteria		 Respond to prompts to say what happened 	 Say what has changed when observing objects, living things or events
	33a a a.		
Call	Suggest what to do next		
While learning aboutpupils can	 Suggest ways that they could have done things differently with help 		 Say what made their investigation fair or not fair
Level 2 Learning targets	Say what went well and what didn't go well	Say what happened in an experiment or investigation	Say how they can collect the evidence/data differently
	 When investigating which size of paper cone allows the sand to fall the fastest, suggest things which could have been done differently 	sand to fall fastest, state what happened	 When investigating which size of paper cone allows sand to fall fastest, suggest ways to collect data differently
	 When using the Concept cartoon™ Snowman, suggest ideas for carrying out an investigation 	cartoon™ Snowman, state what has happened When investigating which size of paper cone allows	 When using the Concept cartoon™ Snowman, suggest ideas about what would make their investigations fair
Examples of some contexts to support lesson planning	 When investigating reaction times, for example, dropping a ruler, state what went well and what didn't go well 	 When investigating reaction times, for example dropping a ruler, state what happened When using the Concept 	 When investigating reaction times, for example dropping a ruler, state how to collect the evidence/data differently
Level 2 APP assessment criteria	Say whether what happened was what they expected	Say what happened in their experiment or investigation	 Respond to prompts to suggest different ways they could have done things

The National Strategies
Learning targets in science

6. Learning targets linked to levels

Another way of setting Learning targets is to base them on each attainment level. In sections 6.1–6.7 there are seven tables, each showing Learning targets associated with the Assessment Focus related to a single level between level 2 and level 8.

6.1 Learning targets linked to level 2

AF1 Thread	Using models for and in explanations	Weighing up evidence to construct arguments and explanations	The process of developing ideas including the role of the scientific community	Provisional nature of scientific evidence
Level 2 APP assessment criteria		 Make comparisons between basic features or components of objects, living things or events Sort and group objects, living things or events on the basis of what they have observed 	 Draw on their observations and ideas to offer answers to questions Respond to suggestions to identify some evidence (in the form of information, observations or measurements) needed to answer a question 	
Level 2 Learning targets While learning about pupils can		 Compare features or components of objects, living things or events Use observations to group objects, living things or events 	 Use what they see and their own ideas to offer answers to questions Use help to identify evidence needed to answer a question 	

AF2 Thread	Effect of societal norms (political, social, cultural, economic) on science	Creative use of scientific ideas to bring about technological developments	Implications, benefits and drawbacks of scientific and technological development of society and the environment	How science relates to jobs and roles
Level 2 APP assessment criteria			 Identify scientific or technological phenomena and say whether or not they are helpful Describe, in familiar contexts, how science helps people do things Express personal feelings or opinions about scientific or technological phenomena 	Identify people who use science to help others
Level 2 Learning targets While learning aboutpupils can			 Identify scientific or technological phenomena and say whether or not they are helpful Describe, in familiar contexts, how science helps people do things Express personal feelings or opinions about scientific or technological phenomena 	Identify people who use science to help others

AF3 Thread	Using appropriate presentation skills to enhance communication of scientific findings and arguments	Explaining ideas and evidence using appropriate conventions, terminology and symbols	Presenting a range of views judging any possible misrepresentation	Scientists communicating worldwide using conventions
Level 2 APP assessment criteria	Present their ideas and evidence in appropriate ways	 Use simple scientific vocabulary to describe their ideas and observations 	 Respond to prompts by using simple texts and electronic media to find information 	 Work together on an experiment or investigation and recognise contributions made by others
Level 2 Learning targets While learning aboutpupils can	 Present ideas with help using simple tables, charts or diagrams 	 Use simple scientific words to describe their ideas and observations 	Find things out when guided using books or computers	Say how others have helped them when working together in a group

AF4 Thread	To plan appropriate scientific investigations effectively	To identify and manipulate variables within the context of an investigation	To support the gathering of evidence through collection of precise and reliable data	To be aware of the risks associated with the investigative process
Level 2 APP assessment criteria	 Correctly use equipment provided to make valid observations and measurements 	 Identify things to measure or observe that are relevant to the question or idea they are investigating 	 Make some suggestions about how to find things out or how to collect data to answer a question 	
Level 2 Learning targets While learning aboutpupils can	 Have their own ideas about how to find things out, or how to collect data to answer a question or idea they are investigating 	 In their investigation with support: say what to look for say what to measure 	 Use books/ICT and ask questions to find things out Make measurements using standard and non-standard equipment 	

AF5 Thread	Evaluation of the planning and implementation of scientific investigations	Consideration of errors and anomalies	Processing and analysing data to support the evaluation process and draw conclusions	Explanation and evaluation of evidence to support the scientific process
Level 2 APP assessment criteria	Say whether what happened was what they expected		Say what happened in their experiment or investigation	 Respond to prompts to suggest different ways they could have done things
Level 2 Learning targets	 Say what went well and what didn't go well 		 Say what happened in an experiment or investigation 	 Say how they can collect the evidence/data differently
While learning aboutpupils can	 Suggest ways that they could have done things differently with help 			 Say what made their investigation fair or not fair
	 Suggest what to do next 			

6.2 Learning targets linked to level 3

AF1 Thread	Using models for and in explanations	Weighing up evidence to construct arguments and explanations	The process of developing ideas including the role of the scientific community	Provisional nature of scientific evidence
Level 3 APP assessment criteria	 Represent things in the real world using simple physical models 	 Identify differences, similarities or changes related to simple scientific ideas, processes or phenomena 	 Respond to ideas given to them to answer questions or suggest solutions to problems 	
		 Use straightforward scientific evidence to answer questions, or to support their findings 		
Level 3 Learning targets While learning aboutpupils can	 Make a model to represent something that they have seen 	 Identify differences, similarities or changes within things to do with science Use scientific evidence and ideas to answer questions 	 Answer questions/solve problems Support what they have found out using their own experience 	

AF2 Thread	Effect of societal norms (political, social, cultural, economic) on science	Creative use of scientific ideas to bring about technological developments	Implications, benefits and drawbacks of scientific and technological development of society and the environment	How science relates to jobs and roles
Level 3 APP assessment criteria			 Link applications to specific characteristics or properties Explain the purposes of a variety of scientific or technological developments 	 Identify aspects of our lives, or of the work that people do, which are based on scientific ideas
Level 3 Learning targets While learning aboutpupils can			 Say how and why some science or technology is used Say how and why some science or technology has changed 	Say how science is used in their life or in some jobs

AF3 Thread	Using appropriate presentation skills to enhance communication of scientific findings and arguments	Explaining ideas and evidence using appropriate conventions, terminology and symbols	Presenting a range of views judging any possible misrepresentation	Scientists communicating worldwide using conventions
Level 3 APP assessment criteria	 Present simple scientific data in more than one way, including via tables and bar charts 	 Use scientific forms of language when communicating simple scientific ideas, processes or phenomena 		 Identify simple advantages of working together on experiments or investigations
Level 3 Learning targets While learning aboutpupils can	Draw tables and bar charts	 Show what has been found out with some support Use simple scientific words to describe or compare correctly Include scientific terms and symbols (e.g. units) 		 Say how working together has helped improve their learning

AF4 Thread	To plan appropriate scientific investigations effectively	To identify and manipulate variables within the context of an investigation	To support the gathering of evidence through collection of precise and reliable data	To be aware of the risks associated with the investigative process
Level 3 APP assessment criteria	 Select equipment or information sources from those provided to address a question or idea under investigation 	 Identify one or more control variables in investigations from those provided 	 Make some accurate observations or whole number measurements relevant to questions or ideas under investigation 	Recognise obvious risks when prompted
Level 3 Learning targets While learning aboutpupils can	 Choose from a list (set) of equipment what items they would use to investigate a question or idea Choose what content they would use from some information provided to investigate a question or idea 	Choose from a list at least one variable that needs to be kept the same in their investigation to make it a fair test	 With help, say what has been observed (accurately) Measure accurately using whole numbers (+/-) measurements 	Recognise why instructions keep them and others safe

	_
(0
,	`
1	٦,
(Ó
-	2
2	≤
-	2
(`
(2
7	2
Ų	2
=	₹.
7	₹.
4	╪
7	⇉
	٠.
ŗ	\simeq
(ب
7	≂

AF5 Thread	Evaluation of the planning and implementation of scientific investigations	Consideration of errors and anomalies	Processing and analysing data to support the evaluation process and draw conclusions	Explanation and evaluation of evidence to support the scientific process
Level 3 APP assessment criteria	 Suggest improvements to their working methods 		 Identify straightforward patterns in observations or in data presented in various formats, including tables, pie and bar charts Describe what they have found out in experiments or investigations, linking cause and effect 	
Level 3 Learning targets While learning aboutpupils can	 Talk about problems they have had with their investigations Suggest an improvement to planning 		 Describe results from observations and data Link a cause to the effect they see in results Describe what has been found out in the investigation and why Identify simple patterns in data, charts and graphs 	

00061-2010BKT-EN

6.3 Learning targets linked to level 4

AF1 Thread	Using models for and in explanations	Weighing up evidence to construct arguments and explanations	The process of developing ideas including the role of the scientific community	Provisional nature of scientific evidence
Level 4 APP assessment criteria	Use simple models to describe scientific ideas	 Identify scientific evidence that is being used to support or refute ideas or arguments 	 Use scientific ideas when describing simple processes or phenomena 	 Identify scientific evidence that is being used to support or refute ideas or arguments
Level 4 Learning targets While learning	 Describe scientific ideas using scientific terms correctly 	 Recognise when scientific evidence is for or against an argument 	 Use scientific language to describe processes and observations 	 Recognise when scientific evidence is for or against an argument
aboutpupils can	 Describe scientific ideas using a physical model 	 Recognise when scientific evidence supports an idea or not 	 Use scientific facts when describing processes and observations 	 Recognise when scientific evidence supports an idea or not

AF2 Thread	Effect of societal norms (political, social, cultural, economic) on science	Creative use of scientific ideas to bring about technological developments	Implications, benefits and drawbacks of scientific and technological development of society and the environment	How science relates to jobs and roles
Level 4 APP assessment criteria			 Recognise applications of specific scientific ideas Describe some simple positive and negative consequences of scientific and technological developments 	 Identify aspects of science used within particular jobs or roles
Level 4 Learning targets While learning aboutpupils can			 Identify the good and bad uses of technology and science Identify how science is used in different ways in every day life 	 Identify aspects of science in specific jobs Identify how different jobs use science

The National Strategies Learning targets in science

AF3 Thread	Using appropriate presentation skills to enhance communication of scientific findings and arguments	Explaining ideas and evidence using appropriate conventions, terminology and symbols	Presenting a range of views judging any possible misrepresentation	Scientists communicating worldwide using conventions
Level 4 APP assessment criteria	 Select appropriate ways of presenting scientific data 	 Use appropriate scientific forms of language to communicate scientific ideas, processes or phenomena Use scientific and mathematical conventions 		
		when communicating information or ideas		
Level 4 Learning targets While learning aboutpupils can	 Select useful ways of presenting information 	 Use clear sentences, scientific words and symbols to describe simple ideas and observations 		

AF4 Thread	To plan appropriate scientific investigations effectively	To identify and manipulate variables within the context of an investigation	To support the gathering of evidence through collection of precise and reliable data	To be aware of the risks associated with the investigative process
Level 4 APP assessment criteria	 Select appropriate equipment or information sources to address specific questions or ideas under investigation 	 Decide when it is appropriate to carry out fair tests in investigations 	 Make sets of observations or measurements, identifying the ranges and intervals used 	 Identify possible risks to themselves and others
Level 4 Learning targets While learning aboutpupils can	 Choose the best equipment to investigate a question or idea Choose the best information to investigate a question or idea 	 Decide whether a fair test is the best way to investigate something 	 Make observations or measurements and say what the range and intervals are 	Identify when/how someone might be harmed when doing an experiment

AF5 Thread	Evaluation of the planning and implementation of scientific investigations	Consideration of errors and anomalies	Processing and analysing data to support the evaluation process and draw conclusions	Explanation and evaluation of evidence to support the scientific process
Level 4 APP assessment criteria	 Suggest improvements to their working methods, giving reasons 		 Identify patterns in data presented in various formats, including line graphs Draw straightforward conclusions from data presented in various formats 	 Identify scientific evidence they have used in drawing conclusions
Level 4 Learning targets While learning aboutpupils can	 Suggest more than one sensible improvement to planning Give a sensible reason for making an improvement to planning 		 Describe a relationship in data to: form a conclusion from results identify which evidence they have used to form their conclusion 	 State the evidence used in making their conclusion

© Crown copyright 2010

6.4 Learning targets linked to level 5

AF1 Thread	Using models for and in explanations	Weighing up evidence to construct arguments and explanations	The process of developing ideas including the role of the scientific community	Provisional nature of scientific evidence
Level 5 APP assessment criteria	 Use abstract ideas or models of more than one step when describing processes or phenomena Explain processes or phenomena, suggest solutions to problems or answer questions by drawing on abstract ideas or models 	Identify the use of evidence and creative thinking by scientists in the development of scientific ideas		Recognise scientific questions that do not yet have definitive answers
Level 5 Learning targets While learning aboutpupils can	 Explain ideas or events using abstract models in familiar situations Develop a description that uses abstract ideas or models of more than one step Suggest solutions to problems using scientific ideas 	Show how scientists develop ideas by looking at a problem in different and imaginative ways and how this can be linked to the use of evidence or vice versa		Give examples of instances where science cannot answer all our questions

0
0
Ō
ā
.1.
7
\circ
=
$\underline{\circ}$
8
ᄌ
-
四
_

AF2 Thread	Effect of societal norms (political, social, cultural, economic) on science	Creative use of scientific ideas to bring about technological developments	Implications, benefits and drawbacks of scientific and technological development of society and the environment	How science relates to jobs and roles
Level 5 APP assessment criteria	 Identify ethical or moral issues linked to scientific or technological developments Describe different viewpoints a range of people may have about scientific or technological developments 		 Link applications of science or technology to their underpinning scientific ideas Indicate how scientific or technological developments may affect different groups of people in different ways 	
Level 5 Learning targets While learning aboutpupils can	 Consider whether it is right or wrong to use different types of technology and science Describe the views people have about using science and technology 		 Describe how science and technology affect people Describe how scientific ideas have been developed and used 	

AF3 Thread	Using appropriate presentation skills to enhance communication of scientific findings and arguments	Explaining ideas and evidence using appropriate conventions, terminology and symbols	Presenting a range of views judging any possible misrepresentation	Scientists communicating worldwide using conventions
Level 5 APP assessment criteria	 Decide on the most appropriate formats to present sets of scientific data, such as using line graphs for continuous variables 	 Use appropriate scientific and mathematical conventions and terminology to communicate abstract ideas 	 Distinguish between opinion and scientific evidence in contexts related to science, and use evidence rather than opinion to support or challenge scientific arguments 	 Suggest how collaborative approaches to specific experiments or investigations may improve the evidence collected
Level 5 Learning targets While learning aboutpupils can	 Select the most useful ways of presenting information, given a range of choices, for example when a line graph should be used rather than a bar chart 	Use clear sentences, scientific words and symbols correctly when describing abstract ideas and observations	 Support or challenge scientific arguments using evidence, not opinion 	 Describe how working together could improve an investigation, for example by making it more reliable

AF4 Thread	To plan appropriate scientific investigations effectively	To identify and manipulate variables within the context of an investigation	To support the gathering of evidence through collection of precise and reliable data	To be aware of the risks associated with the investigative process
Level 5 APP assessment criteria	 Explain why particular pieces of equipment or information sources are appropriate for the questions or ideas under investigation 	 Recognise significant variables in investigations, selecting the most suitable to investigate 	 Repeat sets of observations or measurements where appropriate, selecting suitable ranges and intervals 	 Make, and act on, suggestions to control obvious risks to themselves and others
Level 5 Learning targets While learning aboutpupils can	 Explain why particular pieces of equipment or information sources are appropriate for the questions or ideas under investigation 	Recognise significant variables in investigations, selecting the most suitable to investigate	 Repeat sets of observations or measurements where appropriate, selecting suitable ranges and intervals 	 Make, and act on, suggestions to control obvious risks to themselves and others

AF5 Thread	Evaluation of the planning and implementation of scientific investigations	Consideration of errors and anomalies	Processing and analysing data to support the evaluation process and draw conclusions	Explanation and evaluation of evidence to support the scientific process
Level 5 APP assessment criteria	 Evaluate the effectiveness of their working methods, making practical suggestions for improving them 	 Provide straightforward explanations for differences in repeated observations or measurements 	 Draw valid conclusions that utilise more than one piece of supporting evidence, including numerical data and line graphs Interpret data in a variety of formats, recognising obvious inconsistencies 	
Level 5 Learning targets While learning aboutpupils can	 Evaluate the method used to improve planning Discuss the strengths and weaknesses of their planning with others Consider whether results are reliable Describe practical suggestions that could improve planning to produce better results 	 Recognise data that does not fit a pattern or trend Use the term 'anomalous result' correctly Recognise anomalous results in tables, charts and graphs Decide whether data matches predictions made 	 Use more than one piece of evidence when forming a conclusion Use data, charts and graphs from primary and secondary evidence to justify their conclusion Look for alternative conclusions the data can present 	

6.5 Learning targets linked to level 6

AF1 Thread	Using models for and in explanations	Weighing up evidence to construct arguments and explanations	The process of developing ideas including the role of the scientific community	Provisional nature of scientific evidence
Level 6 APP assessment criteria	 Use abstract ideas or models or multiple factors when explaining processes or phenomena Identify the strengths and weaknesses of particular models 	 Describe some scientific evidence that supports or refutes particular ideas or arguments, including those in development 	 Explain how new scientific evidence is discussed and interpreted by the scientific community and how this may lead to changes in scientific ideas 	Describe some scientific evidence that supports or refutes particular ideas or arguments, including those in development
Level 6 Learning targets While learning aboutpupils can	 Explain logically ideas or events using abstract models in new situations Say what is good or bad about a model Select the most appropriate model to explain an idea 	Describe evidence which supports or disproves accepted or developing scientific ideas	 Explain how ideas change as people working in science discuss new evidence Explain how ideas change as a result of interpreting evidence in different ways 	Describe evidence which supports or disproves accepted or developing scientific ideas

AF2 Thread	Effect of societal norms (political, social, cultural, economic) on science	Creative use of scientific ideas to bring about technological developments	Implications, benefits and drawbacks of scientific and technological development of society and the environment	How science relates to jobs and roles
Level 6 APP assessment criteria	 Describe how different decisions on the uses of scientific and technological developments may be made in different economic, social or cultural contexts 	 Describe how particular scientific or technological developments have provided evidence to help scientists pose and answer further questions 	 Explain how societies are affected by particular scientific applications or ideas 	Describe how aspects of science are applied in particular jobs or roles
Level 6 Learning targets While learning aboutpupils can	 Describe how science and technology are used in different cultures Describe how costs affect decisions on the uses of science and technology Describe how science and technology affect societies 	 Describe how evidence leads to further investigation Describe how some science and technology developments have been used to ask and answer questions 	 Explain how some science and technology have helped society 	 Describe how people use science in their jobs Describe how science is used in different jobs

AF3 Thread	Using appropriate presentation skills to enhance communication of scientific findings and arguments	Explaining ideas and evidence using appropriate conventions, terminology and symbols	Presenting a range of views judging any possible misrepresentation	Scientists communicating worldwide using conventions
Level 6 APP assessment criteria	 Choose forms to communicate qualitative or quantitative data appropriate to the data and the purpose of the communication 	 Distinguish between data and information from primary sources, secondary sources and simulations, and present them in the most appropriate form 	 Identify lack of balance in the presentation of information or evidence 	
Level 6 Learning targets While learning aboutpupils can	 Independently select the most useful ways to present qualitative and quantitative data Explain which type of presentation is best for the data or the task 	 Recognise the difference between a primary and a secondary source of evidence and information and know when the evidence comes from a simulation Present the different kinds of evidence clearly 	Identify bias in information or evidence	

AF4 Thread	To plan appropriate scientific investigations effectively	To identify and manipulate variables within the context of an investigation	To support the gathering of evidence through collection of precise and reliable data	To be aware of the risks associated with the investigative process
Level 6 APP assessment criteria	 Collect data, choosing appropriate ranges, numbers and values for measurements and observations 	 Apply scientific knowledge and understanding in the planning of investigations, identifying significant variables and recognising which are independent and which are dependent 		 Independently recognise a range of familiar risks and take action to control them
		 Justify their choices of data collection method and proposed number of observations and measurements 		
Level 6 Learning targets While learning aboutpupils can	Change the value of the independent variable in their plan and explain why they chose a particular range and number so that they could collect enough data	 Explain the difference between the independent and dependent variables used in their investigations Explain their choice: for how they will collect the data 		 Work out for themselves when doing an experiment what the potential harm is, by thinking ahead and taking action to avoid the risk
		 regarding the number of measurements they will take 		

AF5 Thread	Evaluation of the planning and implementation of scientific investigations	Consideration of errors and anomalies	Processing and analysing data to support the evaluation process and draw conclusions	Explanation and evaluation of evidence to support the scientific process
Level 6 APP assessment criteria	Make valid comments on the q	uality of their data	 Select and manipulate data and information and use them to contribute to conclusions Draw conclusions that are consistent with the evidence they have collected and explain them using scientific knowledge and understanding Make valid comments on the quality of their data 	Suggest reasons based on scientific knowledge and understanding for any limitations or inconsistencies in evidence collected
Level 6 Learning targets While learning aboutpupils can	 Describe how the plan gives reliable and accurate collection of data Decide how their methods could lead to inaccuracies in the data collected Comment on whether they have collected enough data to come to a reliable conclusion 	 Explain any anomalous results using scientific knowledge and understanding Explain how repeating results can lead to the identification of anomalous results Explain why results might be different from their prediction 	 Select the most relevant data to make a conclusion Explain how the selection or rejection of data can lead to different conclusions, using scientific knowledge and understanding 	 Explain inconsistencies in the data, using scientific knowledge and understanding Comment on how reliable the range of data is, taking into consideration: number of repeats number of data points choice of equipment procedure

6.6 Learning targets linked to level 7

AF1 Thread	Using models for and in explanations	Weighing up evidence to construct arguments and explanations	The process of developing ideas including the role of the scientific community	Provisional nature of scientific evidence
Level 7 APP assessment criteria	 Make explicit connections between abstract ideas and/ or models in explaining processes or phenomena 	 Employ a systematic approach in deciding the relative importance of a number of scientific factors when explaining processes or phenomena 	 Explain the processes by which ideas and evidence are accepted or rejected by the scientific community 	 Explain how different pieces of evidence support accepted scientific ideas or contribute to questions that science cannot fully answer
Level 7 Learning targets While learning aboutpupils can	 Develop original models to explain ideas and events Justify the selection of a model to explain an idea Explain events explicitly linking different ideas or models 	 Consider and weigh up all the evidence available Explain how and why some pieces of evidence are more important than others when explaining scientific ideas or events 	 Explain how scientists accept or reject each others' ideas and evidence using peer review Question assumptions, prejudice and bias in scientific evidence 	 Explain how evidence has supported accepted scientific ideas Explain how evidence can enable further questions to be asked Explain how emerging evidence is helping to explain scientific theories

AF2 Thread	Effect of societal norms (political, social, cultural, economic) on science	Creative use of scientific ideas to bring about technological developments	Implications, benefits and drawbacks of scientific and technological development of society and the environment	How science relates to jobs and roles
Level 7 APP assessment criteria	 Suggest economic, ethical/ moral, social or cultural arguments for and against scientific or technological developments Suggest ways in which scientific and technological developments may be influenced 	Explain how creative thinking in science and technology generates ideas for future research and development	Explain how scientific discoveries can change world views	
Level 7 Learning targets While learning aboutpupils can	 Use economic, social or cultural arguments to justify scientific or technological developments Argue how ethical and moral issues have influenced scientific and technological development Evaluate how science and technology have impacted on different cultures Argue how economics have influenced scientific and technological development Suggest ways in which scientific and technological developments may be influenced by economic, cultural and societal factors 	 Explain how creative thinking has developed science and technology Explain how creative thinking generates ideas for future research 	Explain how science has changed the world around us	

The National Strategies
Learning targets in science

AF3 Thread	Using appropriate presentation skills to enhance communication of scientific findings and arguments	Explaining ideas and evidence using appropriate conventions, terminology and symbols	Presenting a range of views judging any possible misrepresentation	Scientists communicating worldwide using conventions
Level 7 APP assessment criteria	 Effectively represent abstract i flow diagrams and different king explanations and arguments 	deas using appropriate symbols, nds of graphs in presenting	 Explain how information or evidence from various sources may have been manipulated in order to influence interpretation 	 Explain how scientists with different specialisms and skills have contributed to particular scientific or technological developments
Level 7 Learning targets While learning aboutpupils can	 Present explanations and argu appropriate symbols, diagrams 	ments about abstract ideas using s and graphs	 Explain how information and evidence may be manipulated to influence people 	 Explain how scientists, who are experts in different areas, have worked together to contribute to an idea or development

AF4 Thread	To plan appropriate scientific investigations effectively	To identify and manipulate variables within the context of an investigation	To support the gathering of evidence through collection of precise and reliable data	To be aware of the risks associated with the investigative process
Level 7 APP assessment criteria	 Formulate questions or ideas that can be investigated by synthesising information from a range of sources 	 Identify key variables in complex contexts, explaining why some cannot readily be controlled, and plan appropriate approaches to investigations to take account of this 	 Explain how to take account of sources of error in order to collect reliable data 	 Recognise the need for risk assessments and consult, and act on, appropriate sources of information
Level 7 Learning targets While learning aboutpupils can	 Having considered information from a variety of different sources, come up with a question or idea to investigate 	 Plan for investigations, taking into account those variables that cannot be controlled, and include ways of minimising the effect of these 	 Explain why the data that can be collected may be inconsistent Explain what they can do to make the data more reliable 	 Consult other sources of information to check that they are working as safely as possible and inform their risk assessment skills

AF5 Thread	Evaluation of the planning and implementation of scientific investigations	Consideration of errors and anomalies	Processing and analysing data to support the evaluation process and draw conclusions	Explanation and evaluation of evidence to support the scientific process
Level 7 APP assessment criteria	Explain ways of modifying working methods to improve reliability	 Assess the strength of evidence, deciding whether it is sufficient to support a conclusion Explain ways of modifying working methods to improve reliability 	Assess the strength of evidence, deciding whether it is sufficient to support a conclusion	 Explain how data can be interpreted in different ways and how unexpected outcomes could be significant Identify quantitative relationships between variables, using them to inform conclusions and make further predictions
Level 7 Learning targets While learning aboutpupils can	 Explain how planning can be changed to improve validity through increased reliability and accuracy Explain how limitations in investigations may have led to inconsistencies Explain how improvements to planning will lead to the collection of more valid data 	 Consider how anomalies may impact upon the conclusion Plot raw data as well as mean values on graphs to demonstrate spread Comment on the spread of data in terms of accuracy and precision 	 Assess the quality and quantity of evidence to make a valid conclusion Use conflicting evidence effectively Critically evaluate the conclusions drawn by others 	 Explain how data can be interpreted in different ways Recognise the significance of unexpected outcomes Identify quantitative relationships between variables Use evidence to make and explain further predictions

6.7 Learning targets linked to level 8

AF1 Thread	Using models for and in explanations	Weighing up evidence to construct arguments and explanations	The process of developing ideas including the role of the scientific community	Provisional nature of scientific evidence
Level 8 APP assessment criteria	 Describe or explain processes or phenomena, logically and in detail, making use of abstract ideas and models from different areas of science 	 Select and justify an appropriate approach to evaluating the relative importance of a number of different factors in explanations or arguments 	Analyse the development of scientific theories through the emergence of new, accepted ideas and evidence	
Level 8 Learning targets While learning aboutpupils can	 Explain events logically linking different ideas or models beyond the level expected in normal science lessons Use language that is ambitious, clear and relevant to the context Use criteria to evaluate the appropriateness of a model 	 Demonstrate a clear, critical stance on scientific ideas using evidence Describe the limitations of evidence and the effect of this on the credibility of the argument Justify an approach to evaluating an explanation or argument 	 Analyse how a new theory came about over time by investigating the available evidence Explain why scientific ideas are provisional Recognise that different interpretations of evidence can lead to controversy 	

AF2 Thread	Effect of societal norms (political, social, cultural, economic) on science	Creative use of scientific ideas to bring about technological developments	Implications, benefits and drawbacks of scientific and technological development of society and the environment	How science relates to jobs and roles
Level 8 APP assessment criteria	Describe ways in which the values of a society influence the nature of the science developed in that society or period of history	 Explain the unintended consequences that may arise from scientific and technological developments 	 Make balanced judgements about particular scientific or technological developments by evaluating the economic ethical/moral, social or cultural implications Evaluate the effects of scientific or technological developments on society as a whole 	
Level 8 Learning targets While learning aboutpupils can	 Describe how values of society influence scientific or technological developments Describe how society has caused changes in scientific or technological developments Describe how science has changed through history 	Identify and explain how scientific and technological developments have been used in ways that were not intended	 Evaluate how and why scientific or technological developments have had an economic impact on society Evaluate how and why scientific or technological developments have influenced different cultures Evaluate how and why scientific or technological developments can have ethical or moral consequences Evaluate how and why scientific and technological developments have influenced society Evaluate the ethical and moral issues faced by people who use science or technology in their jobs 	

0
0
0
<u> </u>
J
20
\preceq
0
₩.
$^{\sim}$
ᅻ
⊞
_

AF3 Thread	Using appropriate presentation skills to enhance communication of scientific findings and arguments	Explaining ideas and evidence using appropriate conventions, terminology and symbols	Presenting a range of views judging any possible misrepresentation	Scientists communicating worldwide using conventions
Level 8 APP assessment criteria	 Present robust and well-struct counter-arguments in a variety 	ured explanations, arguments or of ways	 Critically evaluate information and evidence from various sources, explaining limitations, misrepresentation or lack of balance 	 Suggest the specialisms and skills that would be needed to solve particular scientific problems or to generate particular new scientific or technological developments
Level 8 Learning targets While learning aboutpupils can	 Present well-structured explar arguments in a variety of ways 	•	Evaluate information to identify limitations, misrepresentation and/or bias	Suggest which scientific specialisms would be required to solve specific problems or generate new scientific developments

AF4 Thread	To plan appropriate scientific investigations effectively	To identify and manipulate variables within the context of an investigation	To support the gathering of evidence through collection of precise and reliable data	To be aware of the risks associated with the investigative process
Level 8 APP assessment criteria	Justify their choice of strategie kinds of scientific questions, us understanding		 Choose and justify data collection methods that minimise error, and produce precise and reliable data 	 Adapt their approaches to practical work to control risk by consulting appropriate resources and expert advice
Level 8 Learning targets While learning aboutpupils can	Explain why a particular method has been chosen to answer any scientific question		 Justify their chosen method in terms of collecting reliable and precise data 	 Change an experimental approach in order to control risks that have been identified from other sources

AF5 Thread	Evaluation of the planning and implementation of scientific investigations	Consideration of errors and anomalies	Processing and analysing data to support the evaluation process and draw conclusions	Explanation and evaluation of evidence to support the scientific process
Level 8 APP assessment criteria	 Suggest and justify improvements to experimental procedures using detailed scientific knowledge and understanding Suggest coherent strategies to take particular investigations further 	 Propose scientific explanations for unexpected observations or measurements, making allowances for anomalies 	 Process data, including using multi-step calculations and compound measures, to identify complex relationships between variables 	Critically interpret, evaluate and synthesise conflicting evidence
Level 8 Learning targets While learning aboutpupils can	 Justify improvements to a plan using detailed knowledge and understanding Suggest a well thought out strategy to take the investigation further 	 Offer a scientific explanation for unexpected data Reduce the effect of random error through discounting or re-measuring anomalies Identify systematic error through collaborative working 	 Process data using multi-step calculations Use compound measures effectively Identify complex relationships between variables 	 Analyse the evidence from all possible interpretations Synthesise evidence from a range of sources and contexts Use conflicting evidence effectively

Appendices

Appendix 1: Glossary of terms

Achievement	The standards of attainment reached by pupils and the progress they have made to reach those standards		
Attainment	The standard of academic attainment, typically shown by test and examination results		
Assessment for Learning	The use of formative assessment practice on a daily basis to inform pupils' next steps in learning		
Assessment of learning	The use of summative assessment to monitor and track pupils' expected progress		
Classroom climate	The social, emotional and physical environment in which the learning takes place, created and planned for students by the school, teachers and peer group		
Learning targets	Short-, medium- and longer-term learning goals which enable individual pupils to make their next steps in learning		
Feedback	Written and/or oral information the learner receives about their current work that enables them to make the next steps in learning		
Learning objectives	What a teacher wants pupils to be able to learn from the lesson or group of lessons		
Learning outcomes	How the pupils will demonstrate their learning in a lesson		
Success criteria	Information pupils can use to peer and/or self-assess their own progress when doing an activity measured against criteria		
Modelling	Exemplifying a process that pupils are able to use independently in their learning		
Progress	The extent to which pupils have progressed in their learning given their starting points and capabilities		

© Crown copyright 2010 00061-2010BKT-EN

Learning targets in science The National Strategies

© Crown copyright 2010

Appendix 2: Examples of Learning mats

How science and society influence each other

explain how some science and technology have helped society (L6)

describe how science and technology affect people (L5)

identify the good and bad uses of technology and science (L4)

My Learning target:

I need to be able to...

- **describe how** (say what and how I know) immunisation has affected how long people live
- say **how this has changed** in the last century
- give **examples**
- use my research evidence and key scientific words in my description

describe how scientific ideas have been developed and used (L5)

identify how science is used in different ways (L4)

AF 2

How science and society influence each other

describe how science and technology affects people (L5)

My Learning target:

I need to be able to...

identify the good and bad uses of technology and science (L4)

identify the good and science (L4)

identify the good and bad uses of technology and science (L4)

say how and why some science or technology is used (L3)

say how and why some science or technology has changed (L3)

References and further reading

There is a wealth of support for developing aspects of *How Science Works* in the Framework section of the National Strategies web area; go to www.standards.dcsf.gov.uk/nationalstrategies and search for 'Framework for secondary science'.

Support materials in *Progressing to level 6 and beyond in science with added 'How Science Works'* can also be accessed by becoming a registered user and joining the course of the same name.

The language of measurement: Terminology used in school science investigations, ASE and Nuffield Foundation, 2010.

Suggested further reading

Clarke, S. (2003) Enriching Feedback in the Primary Classroom

Hodder Murray: ISBN: 0340872586

Clarke, S. (2005) Formative Assessment in Action: Weaving the Elements Together

Hodder Arnold: ISBN: 0340907827

Clarke, S. (2005) Formative Assessment in the Secondary Classroom

Hodder Murray: ISBN: 0340887664

Acknowledgements

Field of sunflowers by Christophe Libert © SXC 2010

Sunflowers by Anders Rosenlund © SXC 2010

Sunflower seeds by Jason Anthony © SXC 2010

Audience: Science teachers and subject leaders

Date of issue: 02-2010 Ref: **00061-2010BKT-EN**

Copies of this publication may be available from: www.teachernet.gov.uk/publications

You can download this publication and obtain further information at: www.standards.dcsf.gov.uk

© Crown copyright 2010
Published by the Department for Children, Schools and Families

Extracts from this document may be reproduced for non-commercial research, education or training purposes on the condition that the source is acknowledged as Crown copyright, the publication title is specified, it is reproduced accurately and not used in a misleading context.

The permission to reproduce Crown copyright protected material does not extend to any material in this publication which is identified as being the copyright of a third party.

For any other use please contact licensing@opsi.gov.uk www.opsi.gov.uk/click-use/index.htm

